On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [31] Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Knapsack Constraint on the Integer Lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 68 - 75
  • [32] Streaming algorithms for monotone non-submodular function maximization under a knapsack constraint on the integer lattice
    Tan, Jingjing
    Wang, Fengmin
    Ye, Weina
    Zhang, Xiaoqing
    Zhou, Yang
    THEORETICAL COMPUTER SCIENCE, 2022, 937 : 39 - 49
  • [33] Fast algorithms combining threshold-decreasing and greedy methods for maximizing constraint k-submodular functions
    Niu, Shuxian
    Liu, Qian
    Zhou, Yang
    Li, Min
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [34] Approximation for maximizing monotone non-decreasing set functions with a greedy method
    Wang, Zengfu
    Moran, Bill
    Wang, Xuezhi
    Pan, Quan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 29 - 43
  • [35] Approximation for maximizing monotone non-decreasing set functions with a greedy method
    Zengfu Wang
    Bill Moran
    Xuezhi Wang
    Quan Pan
    Journal of Combinatorial Optimization, 2016, 31 : 29 - 43