On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [21] Enhanced deterministic approximation algorithm for non-monotone submodular maximization under knapsack constraint with linear query complexity
    Pham, Canh V.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (01)
  • [22] Deterministic streaming algorithms for non-monotone submodular maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (06)
  • [23] Maximization of Monotone Non-submodular Functions with a Knapsack Constraint over the Integer Lattice
    Tan, Jingjing
    Wang, Fengmin
    Zhang, Xiaoqing
    Zhou, Yang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 364 - 373
  • [24] Streaming algorithm for maximizing a monotone non-submodular function under d-knapsack constraint
    Yanjun Jiang
    Yishui Wang
    Dachuan Xu
    Ruiqi Yang
    Yong Zhang
    Optimization Letters, 2020, 14 : 1235 - 1248
  • [25] Online non-monotone diminishing return submodular maximization in the bandit setting
    Ju, Jiachen
    Wang, Xiao
    Xu, Dachuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (03) : 619 - 649
  • [26] APPROXIMABILITY OF MONOTONE SUBMODULAR FUNCTION MAXIMIZATION UNDER CARDINALITY AND MATROID CONSTRAINTS IN THE STREAMING MODEL
    Huang, Chien-Chung
    Kakimura, Naonori
    Mauras, Simon
    Yoshida, Yuichi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 355 - 382
  • [27] Maximization of k-Submodular Function with d-Knapsack Constraints Over Sliding Window
    Wang, Wenqi
    Sun, Yuefang
    Sun, Zhiren
    Du, Donglei
    Zhang, Xiaoyan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (02): : 488 - 498
  • [28] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Pham, Canh, V
    Vu, Quang C.
    Ha, Dung K. T.
    Nguyen, Tai T.
    Le, Nguyen D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 723 - 751
  • [29] Profit maximization in social networks and non-monotone DR-submodular maximization
    Gu, Shuyang
    Gao, Chuangen
    Huang, Jun
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2023, 957
  • [30] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Canh V. Pham
    Quang C. Vu
    Dung K. T. Ha
    Tai T. Nguyen
    Nguyen D. Le
    Journal of Combinatorial Optimization, 2022, 44 : 723 - 751