On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [11] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Algorithmica, 2021, 83 : 879 - 902
  • [12] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 438 - 451
  • [13] Private non-monotone submodular maximization
    Xin Sun
    Gaidi Li
    Yapu Zhang
    Zhenning Zhang
    Journal of Combinatorial Optimization, 2022, 44 : 3212 - 3232
  • [14] Maximizing k-Submodular Functions and Beyond
    Ward, Justin
    Zivny, Stanislav
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (04)
  • [15] Private non-monotone submodular maximization
    Sun, Xin
    Li, Gaidi
    Zhang, Yapu
    Zhang, Zhenning
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3212 - 3232
  • [16] Streaming Algorithms for Maximizing k-Submodular Functions with the Multi-knapsack Constraint
    Gong, Shu-Fang
    Liu, Bin
    Fang, Qi-Zhi
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [17] Improved Deterministic Algorithms for Non-monotone Submodular Maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 496 - 507
  • [18] Group fairness in non-monotone submodular maximization
    Jing Yuan
    Shaojie Tang
    Journal of Combinatorial Optimization, 2023, 45
  • [19] Group fairness in non-monotone submodular maximization
    Yuan, Jing
    Tang, Shaojie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [20] Non-Submodular Maximization with Matroid and Knapsack Constraints
    Wang, Yijing
    Du, Donglei
    Jiang, Yanjun
    Zhang, Xianzhao
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2021, 38 (05)