On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [1] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Yu, Kemin
    Li, Min
    Zhou, Yang
    Liu, Qian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [2] On maximizing a monotone k-submodular function subject to a matroid constraint
    Sakaue, Shinsaku
    DISCRETE OPTIMIZATION, 2017, 23 : 105 - 113
  • [3] Monotone k-submodular secretary problems: Cardinality and knapsack constraints
    Tang, Zhongzheng
    Wang, Chenhao
    Chan, Hau
    THEORETICAL COMPUTER SCIENCE, 2022, 921 : 86 - 99
  • [4] k-Submodular Maximization with a Knapsack Constraint and p Matroid Constraints
    Liu, Qian
    Yu, Kemin
    Li, Min
    Zhou, Yang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (05): : 896 - 905
  • [5] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [6] Maximizing Approximately Non-k-Submodular Monotone Set Function with Matroid Constraint
    Jiang, Yanjun
    Wang, Yijing
    Yang, Ruiqi
    Ye, Weina
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 11 - 20
  • [7] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT
    Calinescu, Gruia
    Chekuri, Chandra
    Pal, Martin
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1740 - 1766
  • [8] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhang, Zhenning
    Liu, Bin
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (05) : 1125 - 1148
  • [9] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhenning Zhang
    Bin Liu
    Yishui Wang
    Dachuan Xu
    Dongmei Zhang
    Journal of Combinatorial Optimization, 2022, 43 : 1125 - 1148
  • [10] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    ALGORITHMICA, 2021, 83 (03) : 879 - 902