Reconstructing under Group Actions

被引:0
|
作者
A.J. Radcliffe
A.D. Scott
机构
[1] University of Nebraska-Lincoln,Department of Mathematics
[2] University of Oxford,Mathematical Institute
来源
Graphs and Combinatorics | 2006年 / 22卷
关键词
Reconstruction; Group actions; Geometric reconstruction;
D O I
暂无
中图分类号
学科分类号
摘要
We give a bound on the reconstructibility of an action G[inline-graphic not available: see fulltext]X in terms of the reconstructibility of a the action N[inline-graphic not available: see fulltext]X, where N is a normal subgroup of G, and the reconstructibility of the quotient G/N. We also show that if the action G[inline-graphic not available: see fulltext]X is locally finite, in the sense that every point is either in an orbit by itself or has finite stabilizer, then the reconstructibility of G[inline-graphic not available: see fulltext]X is at most the reconstructibility of G. Finally, we give some applications to geometric reconstruction problems.
引用
收藏
页码:399 / 419
页数:20
相关论文
共 50 条
  • [21] Group actions on Jacobian varieties
    Rojas, Anita M.
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (02) : 397 - 420
  • [22] Chaotic behavior of group actions
    Wang, Zhaolong
    Zhang, Guohua
    DYNAMICS AND NUMBERS, 2016, 669 : 299 - 315
  • [23] On Baire measurable colorings of group actions
    Bernshteyn, Anton
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (03) : 818 - 845
  • [24] GROUP ACTIONS, DIVISORS, AND PLANE CURVES
    Bonifant, Araceli
    Milnor, John
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 171 - 267
  • [25] Symmetric group actions on Jacobian varieties
    Carocca, Angel
    Rodriguez, Rubi E.
    Rojas, Anita M.
    RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES, 2014, 629 : 43 - 57
  • [26] Updatable Encryption from Group Actions
    Leroux, Antonin
    Romeas, Maxime
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2024, PT II, 2024, 14772 : 20 - 53
  • [27] Group algebra units and tree actions
    Wiechecki, Lukasz
    JOURNAL OF ALGEBRA, 2007, 311 (02) : 781 - 799
  • [28] Area preserving group actions on surfaces
    Franks, J
    Handel, M
    GEOMETRY & TOPOLOGY, 2003, 7 : 757 - 771
  • [29] Rokhlin Dimension for Compact Group Actions
    Gardella, Eusebio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (02) : 659 - 703
  • [30] Nonsmoothable group actions on elliptic surfaces
    Liu, Ximin
    Nakamura, Nobuhiro
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (09) : 946 - 964