Reconstructing under Group Actions

被引:0
|
作者
A.J. Radcliffe
A.D. Scott
机构
[1] University of Nebraska-Lincoln,Department of Mathematics
[2] University of Oxford,Mathematical Institute
来源
Graphs and Combinatorics | 2006年 / 22卷
关键词
Reconstruction; Group actions; Geometric reconstruction;
D O I
暂无
中图分类号
学科分类号
摘要
We give a bound on the reconstructibility of an action G[inline-graphic not available: see fulltext]X in terms of the reconstructibility of a the action N[inline-graphic not available: see fulltext]X, where N is a normal subgroup of G, and the reconstructibility of the quotient G/N. We also show that if the action G[inline-graphic not available: see fulltext]X is locally finite, in the sense that every point is either in an orbit by itself or has finite stabilizer, then the reconstructibility of G[inline-graphic not available: see fulltext]X is at most the reconstructibility of G. Finally, we give some applications to geometric reconstruction problems.
引用
收藏
页码:399 / 419
页数:20
相关论文
共 50 条
  • [1] Reconstructing under group actions
    Radcliffe, A. J.
    Scott, A. D.
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 399 - 419
  • [2] RECONSTRUCTING GROUP ACTIONS
    Carbone, Lisa
    Rips, Eliyahu
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (02) : 255 - 323
  • [3] Estimation under group actions: Recovering orbits from invariants
    Bandeira, Afonso S.
    Blum-Smith, Ben
    Kileel, Joe
    Niles-Weed, Jonathan
    Perry, Amelia
    Wein, Alexander S.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 66 : 236 - 319
  • [4] LINEAR EXTENSIONS OF ORDERS INVARIANT UNDER ABELIAN GROUP ACTIONS
    Pruss, Alexander R.
    COLLOQUIUM MATHEMATICUM, 2014, 137 (01) : 117 - 125
  • [5] CHAOTIC GROUP ACTIONS
    Shi Enhui 1 Zhou Lizhen 2 Zhou Youcheng 21 Dept. of Math.
    Applied Mathematics:A Journal of Chinese Universities, 2003, (01) : 59 - 63
  • [6] Group actions and orbits
    I. M. Isaacs
    Archiv der Mathematik, 2012, 98 : 399 - 401
  • [7] Chaotic group actions
    Enhui Shi
    Lizhen Zhou
    Youcheng Zhou
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (1) : 59 - 63
  • [8] Group actions on semimatroids
    Delucchi, Emanuele
    Riedel, Sonja
    ADVANCES IN APPLIED MATHEMATICS, 2018, 95 : 199 - 270
  • [9] Group actions and orbits
    Isaacs, I. M.
    ARCHIV DER MATHEMATIK, 2012, 98 (05) : 399 - 401
  • [10] Discrete spectrum for group actions
    Xu, Fang
    Xu, Leiye
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 39 (01): : 141 - 149