Quantum-mechanical correlations and Tsirelson bound from geometric algebra

被引:0
作者
Carsten Held
机构
来源
Quantum Studies: Mathematics and Foundations | 2021年 / 8卷
关键词
No-hidden-variables theorems; Bell–CHSH inequality; Tsirelson bound; Geometric algebra;
D O I
暂无
中图分类号
学科分类号
摘要
The Bell–Clauser–Horne–Shimony–Holt inequality can be used to show that no local hidden-variable theory can reproduce the correlations predicted by quantum mechanics (QM). It can be proved that certain QM correlations lead to a violation of the classical bound established by the inequality, while all correlations, QM and classical, respect a QM bound (the Tsirelson bound). Here, we show that these well-known results depend crucially on the assumption that the values of physical magnitudes are scalars. More specifically, the assumption that these values are not scalars, but vectors that are elements of the geometric algebra G3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\mathbf {3}}}$$\end{document} over R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\mathbf {3}}}$$\end{document}, makes it possible that the classical bound is violated and the QM bound respected, even given a locality assumption.The result implies, first, that the origin of the Tsirelson bound is geometrical, not physical; and, second, that a local hidden-variable theory does not contradict QM if the values of physical magnitudes are vectors in the geometric algebra G3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\mathbf {3}}}$$\end{document}.
引用
收藏
页码:411 / 417
页数:6
相关论文
共 13 条
[1]  
Clauser JF(1969)Proposed experiment to test local hidden-variable theories Phys. Rev. Lett. 23 880-4
[2]  
Horne MA(2011)Bell’s theorem Scholarpedia 6 8378-100
[3]  
Shimony A(1980)Quantum generalizations of Bell’s inequality Lett. Math. Phys. 4 93-891
[4]  
Holt RA(2017)A survey of geometric algebra and geometric calculus Adv. Appl. Cliff. Alg. 27 853-733
[5]  
Goldstein S(2021)Non-contextual and local hidden-variable model for the Peres–Mermin and Greenberger–Horne–Zeilinger systems Found. Phys. 51 33-undefined
[6]  
Norsen T(2011)Quantum locality Found. Phys. 41 705-undefined
[7]  
Taut DV(1990)Simple unified form for the major no-hidden-variables theorems Phys. Rev. Lett. 65 3373-undefined
[8]  
Zanghi N(undefined)undefined undefined undefined undefined-undefined
[9]  
Tsirelson BS(undefined)undefined undefined undefined undefined-undefined
[10]  
Macdonald A(undefined)undefined undefined undefined undefined-undefined