A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection–diffusion equation

被引:0
|
作者
Syed Tauseef Mohyud-Din
Tayyaba Akram
Muhammad Abbas
Ahmad Izani Ismail
Norhashidah H. M. Ali
机构
[1] University of Islamabad (UoI),Center for Research (CFR)
[2] Riphah International University,Faculty of Engineering & Applied Sciences
[3] Universiti Sains Malaysia,School of Mathematical Sciences
[4] University of Sargodha,Department of Mathematics
关键词
Time fractional advection–diffusion equation; Extended cubic B-spline basis functions; Collocation method; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a fully implicit finite difference scheme for solving the time fractional advection–diffusion equation. The time fractional derivative is estimated using Caputo’s formulation, and the spatial derivatives are discretized using extended cubic B-spline functions. The convergence and stability of the fully implicit scheme are analyzed. Numerical experiments conducted indicate that the scheme is feasible and accurate.
引用
收藏
相关论文
共 50 条
  • [21] Finite difference approximations for the fractional advection-diffusion equation
    Su, Lijuan
    Wang, Wenqia
    Yang, Zhaoxia
    PHYSICS LETTERS A, 2009, 373 (48) : 4405 - 4408
  • [22] Meshless finite difference method with B-splines for numerical solution of coupled advection-diffusion-reaction problems
    Hidayat, Mas Irfan P.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 165
  • [23] Compact finite difference scheme for the solution of time fractional advection-dispersion equation
    Akbar Mohebbi
    Mostafa Abbaszadeh
    Numerical Algorithms, 2013, 63 : 431 - 452
  • [24] Compact finite difference scheme for the solution of time fractional advection-dispersion equation
    Mohebbi, Akbar
    Abbaszadeh, Mostafa
    NUMERICAL ALGORITHMS, 2013, 63 (03) : 431 - 452
  • [25] Solving a nonlinear fractional Schrödinger equation using cubic B-splines
    M. Erfanian
    H. Zeidabadi
    M. Rashki
    H. Borzouei
    Advances in Difference Equations, 2020
  • [26] A Reduced-Order Finite Difference Scheme Based on POD for Fractional Stochastic Advection-Diffusion Equation
    Soori, Z.
    Aminataei, A.
    Baleanu, D.
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (04) : 1299 - 1311
  • [27] An Extended Cubic B-spline Collocation Scheme for Time Fractional Sub-diffusion Equation
    Akram, Tayyaba
    Abbas, Muhammad
    Ismail, Ahmad Izani
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [28] Implicit difference approximation for the time fractional diffusion equation
    Zhuang P.
    Liu F.
    J. Appl. Math. Comp., 2006, 3 (87-99): : 87 - 99
  • [29] A fast finite difference scheme for the time-space fractional diffusion equation
    Wang, Y.
    Cai, M.
    IFAC PAPERSONLINE, 2024, 58 (12): : 174 - 178
  • [30] Implicit finite difference techniques for the advection-diffusion equation using spreadsheets
    Karahan, Halil
    ADVANCES IN ENGINEERING SOFTWARE, 2006, 37 (09) : 601 - 608