Conditions for one-valued solvability of nonlinear stationary heat-conduction problems

被引:0
作者
Zhernovyi Yu.V. [1 ]
机构
[1] Lvov University, Lvov
关键词
Green Function; Dirichlet Problem; Nonnegative Solution; Quasilinear Elliptic Equation; Continuous Nonnegative Function;
D O I
10.1007/BF02591765
中图分类号
学科分类号
摘要
We establish conditions for existence and uniqueness of nonnegative solutions of nonlinear stationary heat-conduction problems, the Dirichlet problem and the Neumann one, with regard for the dependence of the heat-conduction coefficient and inner heat sources on temperature. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:630 / 635
页数:5
相关论文
共 9 条
  • [1] Berezovskii A.A., Lectures Cm Nonlinear Boundary-Value Problems of Mathematical Physics [in Russian], (1974)
  • [2] Berezovskii A.A., Nonlinear Boundary-Value Problems of A Heat-Radiating Body [in Russian], (1968)
  • [3] Berezovskii A.A., Zhemovyi Y.V., Saichuk M.T., Simulation of a stationary thermal regime in an autocrucible during electron-beam lining-slag melting, Teplofiz. Vysokikh Temp., 34, 1, pp. 125-133, (1996)
  • [4] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations [in Russian], (1973)
  • [5] Sobolev S.L., Equations of Mathematical Physics [in Russian], (1950)
  • [6] Arsenin V.Ya., Methods of Mathematical Physics and Special Functions [in Russian], (1974)
  • [7] Smimov V.I., Course of Higher Mathematics [in Russian], 4, 2 PART, (1981)
  • [8] Miranda C., Elliptic Partial Differential Equations, (1957)
  • [9] Krasnosel'skii M.A., Positive Solutions of Operator Equations [in Russian], (1962)