Analysis of Boundary Layer Effects Due to Usual Boundary Conditions or Geometrical Defects in Elastic Plates Under Bending: An Improvement of the Love-Kirchhoff Model

被引:0
作者
Andrés León Baldelli
Jean-Jacques Marigo
Catherine Pideri
机构
[1] IMSIA UMR CNRS 9219,LMS
[2] École Polytechnique,Institut de Mathématiques Appliquées
[3] Université de Toulon et du Var,undefined
来源
Journal of Elasticity | 2021年 / 143卷
关键词
Dimension reduction; Plate theory; Boundary layers; Matched asymptotic expansions; 35C20; 35J20; 74G10; 74Q15; 74B05; 74A40; 74K99;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a model of flexural elastic plates accounting for boundary layer effects due to the most usual boundary conditions or to geometrical defects, constructed via matched asymptotic expansions. In particular, considering a rectangular plate clamped at two opposite edges while the other two are free, we derive the effective boundary conditions or effective transmission conditions that the two first terms of the outer expansion must satisfy. The new boundary value problems thus obtained are studied and compared with the classical Love-Kirchhoff plate model. Two examples of application illustrate the results.
引用
收藏
页码:31 / 84
页数:53
相关论文
共 74 条
[1]  
Abdelmoula R.(2000)The effective behavior of a fiber bridged crack J. Mech. Phys. Solids 48 2419-2444
[2]  
Marigo J.J.(1998)Comportement asymptotique d’une interphase élastique mince C. R. Acad. Sci. Paris Sér. II B 326 237-242
[3]  
Abdelmoula R.(2011)Large time existence for thin vibrating plates Commun. Partial Differ. Equ. 36 2062-2102
[4]  
Coutris M.(2002)Higher-order piezoelectric plate theory derived from a three-dimensional variational principle AIAA J. 40 91-103
[5]  
Marigo J.J.(2009)Multi-materials with strong interface: variational modelings Asymptot. Anal. 61 1-19
[6]  
Abels H.(2011)Asymptotic analysis of shell-like inclusions with high rigidity J. Elast. 103 153-172
[7]  
Mora M.G.(2003)An energy based analysis of the pull-out problem Eur. J. Mech. A, Solids 22 55-69
[8]  
Müller S.(2010)On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain SIAM J. Math. Anal. 42 931-945
[9]  
Batra R.C.(1979)A justification of the two-dimensional linear plate model J. Méc. 18 315-344
[10]  
Vidoli S.(2000)Boundary layer realization in thin elastic three-dimensional domains and two-dimensional hierarchic plate models Int. J. Solids Struct. 37 2443-2471