Fission fragment distributions within time-dependent density functional theory

被引:2
作者
Huang, Yun [1 ]
Sun, Xiang-Xiang [1 ,2 ,3 ]
Guo, Lu [1 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[2] Forschungszentrum Julich, Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany
[4] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERATOR-COORDINATE METHOD; NEUTRON-INDUCED FISSION; TENSOR FORCE; ENERGY; MASS; DYNAMICS; LIBRARY; NUCLEI;
D O I
10.1140/epja/s10050-024-01326-2
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A notable issue, the proper description of mass and charge distributions of fission fragments within non-adiabatic descriptions of fission dynamics, is investigated by performing double particle number projection on the outcomes of time-dependent Hartree-Fock (TDHF) simulation. The induced fission process of the benchmark nucleus 240Pu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{240}\textrm{Pu}$$\end{document} is studied. In the three-dimensional Cartesian coordinate without any symmetry restrictions, we get the static fission pathway from the two-dimensional potential energy surface, and then the fission dynamics from saddle to scission point are obtained using TDHF. We show that the charge numbers of primary heavy fragments from TDHF simulation strongly depend on the deformations of initial configurations via the two asymmetric fission channels, which can be distinguished according to the dynamical fission trajectories. The charge distribution of fission fragments is well reproduced using the double particle number projection technique. After applying the Gaussian kernel estimation based on the distribution from the double particle number projection technique, the mass distribution is also consistent with the experimental results. Besides, the results of the total kinetic energy of fission fragments are reasonably consistent with the experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Propagation of initially excited states in time-dependent density-functional theory
    Elliott, Peter
    Maitra, Neepa T.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [32] Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane
    Boo, Bong Hyun
    Lee, Jae Kwang
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2012, 33 (03) : 993 - 996
  • [33] Description of isotopic fission-fragment distributions within the Langevin approach
    Mazurek, K.
    Schmitt, C.
    Nadtochy, P. N.
    PHYSICAL REVIEW C, 2015, 91 (04):
  • [34] Time-dependent density functional theory with twist-averaged boundary conditions
    Schuetrumpf, B.
    Nazarewicz, W.
    Reinhard, P. -G.
    PHYSICAL REVIEW C, 2016, 93 (05)
  • [35] Efficient computation of magnon dispersions within time-dependent density functional theory using maximally localized Wannier functions
    Rousseau, Bruno
    Eiguren, Asier
    Bergara, Aitor
    PHYSICAL REVIEW B, 2012, 85 (05):
  • [36] Accelerating multiscale electronic stopping power predictions with time-dependent density functional theory and machine learning
    Ward, Logan
    Blaiszik, Ben
    Lee, Cheng-Wei
    Martin, Troy
    Foster, Ian
    Schleife, Andre
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [37] Time-dependent density functional theory beyond Kohn-Sham Slater determinants
    Fuks, Johanna I.
    Nielsen, Soren E. B.
    Ruggenthaler, Michael
    Maitra, Neepa T.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (31) : 20976 - 20985
  • [38] Accurate optical spectra of solids from pure time-dependent density functional theory
    Cavo, Sarah
    Berger, J. A.
    Romaniello, Pina
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [39] Plasmonlike resonances in atomic chains: A time-dependent density-functional theory study
    Huang, Yu-Hui
    Lin, Ken-Ming
    Leung, T. C.
    Chan, C. T.
    PHYSICAL REVIEW B, 2014, 90 (07)
  • [40] Excited-State Absorption by Linear Response Time-Dependent Density Functional Theory
    Sheng, Xiaowei
    Zhu, Hongjuan
    Yin, Kai
    Chen, Jichao
    Wang, Jian
    Wang, Chunrui
    Shao, Junfeng
    Chen, Fei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (08) : 4693 - 4700