Fission fragment distributions within time-dependent density functional theory

被引:2
作者
Huang, Yun [1 ]
Sun, Xiang-Xiang [1 ,2 ,3 ]
Guo, Lu [1 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[2] Forschungszentrum Julich, Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany
[4] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERATOR-COORDINATE METHOD; NEUTRON-INDUCED FISSION; TENSOR FORCE; ENERGY; MASS; DYNAMICS; LIBRARY; NUCLEI;
D O I
10.1140/epja/s10050-024-01326-2
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A notable issue, the proper description of mass and charge distributions of fission fragments within non-adiabatic descriptions of fission dynamics, is investigated by performing double particle number projection on the outcomes of time-dependent Hartree-Fock (TDHF) simulation. The induced fission process of the benchmark nucleus 240Pu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{240}\textrm{Pu}$$\end{document} is studied. In the three-dimensional Cartesian coordinate without any symmetry restrictions, we get the static fission pathway from the two-dimensional potential energy surface, and then the fission dynamics from saddle to scission point are obtained using TDHF. We show that the charge numbers of primary heavy fragments from TDHF simulation strongly depend on the deformations of initial configurations via the two asymmetric fission channels, which can be distinguished according to the dynamical fission trajectories. The charge distribution of fission fragments is well reproduced using the double particle number projection technique. After applying the Gaussian kernel estimation based on the distribution from the double particle number projection technique, the mass distribution is also consistent with the experimental results. Besides, the results of the total kinetic energy of fission fragments are reasonably consistent with the experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes
    Peng, Bo
    Yang, Siqi
    Li, Lanlan
    Cheng, Fangyi
    Chen, Jun
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (03)
  • [22] Ionic thermal effects on photo-electron emission within time-dependent density-functional theory
    Gao, Cong-Zhang
    Phuong Mai Dinh
    Reinhard, Paul-Gerhard
    Suraud, Eric
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (02)
  • [23] Time-Dependent Density Functional Theory and the Real-Time Dynamics of Fermi Superfluids
    Bulgac, Aurel
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 63, 2013, 63 : 97 - 121
  • [24] Time-Resolved Spectroscopy in Time-Dependent Density Functional Theory: An Exact Condition
    Fuks, Johanna I.
    Luo, Kai
    Sandoval, Ernesto D.
    Maitra, Neepa T.
    PHYSICAL REVIEW LETTERS, 2015, 114 (18)
  • [25] Magnetic circular dichroism in real-time time-dependent density functional theory
    Lee, K. -M.
    Yabana, K.
    Bertsch, G. F.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (14)
  • [26] Using time-dependent density functional theory in real time for calculating electronic transport
    Schaffhauser, Philipp
    Kuemmel, Stephan
    PHYSICAL REVIEW B, 2016, 93 (03):
  • [27] Time-Dependent Density Functional Theory for Open Quantum Systems with Unitary Propagation
    Yuen-Zhou, Joel
    Tempel, David G.
    Rodriguez-Rosario, Cesar A.
    Aspuru-Guzik, Alan
    PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [28] Time-dependent density functional theory studies of dynamics of hydroxy by proton impact
    Wang Zhi-Ping
    Zhu Yun
    Wu Ya-Min
    Zhang Xiu-Mei
    ACTA PHYSICA SINICA, 2014, 63 (02)
  • [29] Time-dependent density functional theory for strong electromagnetic fields in crystalline solids
    Yabana, K.
    Sugiyama, T.
    Shinohara, Y.
    Otobe, T.
    Bertsch, G. F.
    PHYSICAL REVIEW B, 2012, 85 (04)