On the Generalized Drazin Inverse and Generalized Resolvent

被引:0
作者
Dragan S. Djordjevic
Predrag S. Stanimirovic
机构
[1] University of Nis,Faculty of Sciences, Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2001年 / 51卷
关键词
Drazin inverse; generalized resolvent; limit processes; outer inverses; operator matrices;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in >C*-algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel. Also, 2 × 2 operator matrices are considered. As corollaries, we get some well-known results.
引用
收藏
页码:617 / 634
页数:17
相关论文
共 27 条
  • [1] Ben-Israel A.(1969)On matrices of index zero or one SIAM J. Appl. Math. 17 1118-1121
  • [2] Campbell S. L.(1976)Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients SIAM J. Appl. Math. 31 411-425
  • [3] Meyer C. D.(1998)Transfer functions and spectral projections Publ. Math. Debrecen 52 367-376
  • [4] Rose N. J.(1975)Representation of the generalized inverse J. Math. Anal. Appl. 49 154-157
  • [5] Förster K.-H.(1990)An imbedding method for computing the generalized inverse J. Comput. Math. 8 353-362
  • [6] Nagy B.(1995)Limiting expression for generalized inverse Numerical Mathematics 4 25-30
  • [7] Groetch C.W.(1984), Irish Math. Soc. Newsletter 11 10-15
  • [8] Guorong W.(1991) and its corresponding projectors Panamer. Math. J. 1 10-16
  • [9] Guorong W.(1992)Spectral projections Studia Math. 103 71-77
  • [10] Wei Y.(1994)On quasinilpotents in rings Appl. Math. Comput. 61 151-156