On local properties of spatial generalized quasi-isometries

被引:0
作者
R. R. Salimov
E. A. Sevost’yanov
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
[2] Ivan Franko Zhytomyr State University,undefined
来源
Mathematical Notes | 2017年 / 101卷
关键词
mappings with bounded and finite distortion; local behavior ofmappings; equicontinuity; bounds for distance distortion;
D O I
暂无
中图分类号
学科分类号
摘要
An upper bound for the measure of the image of a ball under mappings of a certain class generalizing the class of branched spatial quasi-isometries is determined. As a corollary, an analog of Schwarz’ classical lemma for these mappings is proved under an additional constraint of integral character. The obtained results have applications to the classes of Sobolev and Orlicz–Sobolev spaces.
引用
收藏
页码:704 / 717
页数:13
相关论文
共 18 条
[1]  
Salimov R. R.(2014)The Poletskii and Vôisôlôinequalities for the mappings with (p, q)-distortion Complex Var. Elliptic Equ. 59 217-231
[2]  
Sevost’yanov E. A.(2013)Toward the theory of Orlicz–Sobolev classes Algebra Anal. 25 50-102
[3]  
Kovtonyuk D. A.(1965)On the distortion and correspondence under quasiconformal mappings in space Nagoya Math. J. 25 175-203
[4]  
Ryazanov V. I.(1969)Definitions for quasiregular mappings Ann. Acad. Sci. Fenn. Ser. A I 448 1-40
[5]  
Salimov R. R.(1986)Capacity of condensers and spatial mappings quasiconformal in the mean Mat. Sb. 130 185-206
[6]  
Sevost’yanov E. A.(2011)Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic Ukrain.Mat. Zh. 63 1368-1380
[7]  
Ikoma K.(1970)Distortion and singularities of quasiregular mappings Ann. Acad. Sci. Fenn. Ser. A I 465 1-13
[8]  
Martio O.(2012)Estimation of the measure of the image of the ball Sibirsk. Mat. Zh. 53 920-930
[9]  
Rickman S.(1982)Normal families of quasimeromorphic mappings Proc. Amer. Math. Soc. 84 35-43
[10]  
Vôisôlô J.(undefined)undefined undefined undefined undefined-undefined