A class of binary cyclic codes and sequence families

被引:0
作者
Hua Liang
Wenbing Chen
Yuansheng Tang
机构
[1] Yangzhou University,School of Mathematical Sciences
[2] Huaiyin Normal University,School of Mathematical Sciences
[3] Anqing Normal University,School of Mathematics and Computation Science
来源
Journal of Applied Mathematics and Computing | 2017年 / 53卷
关键词
Cyclic code; Exponential sum; Weight distribution ; Sequence family; Correlation distribution;
D O I
暂无
中图分类号
学科分类号
摘要
For two odd integers l, k with 0<l<k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<l<k$$\end{document} and gcd(l,k)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (l,k)=1$$\end{document}, let m=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2k$$\end{document} and d=2lk+12l+1+2(2m-1)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{2^{lk}+1}{2^l+1}+\frac{2(2^m-1)}{3}$$\end{document}. In this paper, we determine the value distribution of the exponential sum ∑x∈F2m(-1)Tr1m(ax+bxd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in \mathbb {F}_{2^m}}(-1)^{\mathrm {Tr}_1^m(ax+bx^d)}$$\end{document}. As applications, the weight distribution of a class of binary cyclic codes is settled. Second, we determine the correlation distribution among sequences in a sequence family.
引用
收藏
页码:733 / 746
页数:13
相关论文
共 50 条
  • [41] Several families of irreducible constacyclic and cyclic codes
    Sun, Zhonghua
    Wang, Xiaoqiang
    Ding, Cunsheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (9) : 2821 - 2843
  • [42] Cyclic Codes and Sequences: The Generalized Kasami Case
    Luo, Jinquan
    Tang, Yuansheng
    Wang, Hongyu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2130 - 2142
  • [43] On the Weight Distributions of Two Classes of Cyclic Codes
    Luo, Jinquan
    Feng, Keqin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) : 5332 - 5344
  • [44] Binary cyclic codes with two primitive nonzeros
    FENG Tao
    LEUNG KaHin
    XIANG Qing
    ScienceChina(Mathematics), 2013, 56 (07) : 1403 - 1412
  • [45] Binary cyclic codes with two primitive nonzeros
    Tao Feng
    KaHin Leung
    Qing Xiang
    Science China Mathematics, 2013, 56 : 1403 - 1412
  • [46] Binary cyclic codes with two primitive nonzeros
    Feng Tao
    Leung KaHin
    Xiang Qing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1403 - 1412
  • [47] A class of six-weight cyclic codes and their weight distribution
    Yan Liu
    Haode Yan
    Chunlei Liu
    Designs, Codes and Cryptography, 2015, 77 : 1 - 9
  • [48] A class of five-weight cyclic codes and their weight distribution
    Yan Liu
    Haode Yan
    Designs, Codes and Cryptography, 2016, 79 : 353 - 366
  • [49] THE WEIGHT DISTRIBUTION OF A CLASS OF p-CYCLIC CODES AND THEIR APPLICATIONS
    Li, Lanqiang
    Zhu, Shixin
    Liu, Li
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (01) : 137 - 156
  • [50] A class of five-weight cyclic codes and their weight distribution
    Liu, Yan
    Yan, Haode
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (02) : 353 - 366