A class of binary cyclic codes and sequence families

被引:0
作者
Hua Liang
Wenbing Chen
Yuansheng Tang
机构
[1] Yangzhou University,School of Mathematical Sciences
[2] Huaiyin Normal University,School of Mathematical Sciences
[3] Anqing Normal University,School of Mathematics and Computation Science
来源
Journal of Applied Mathematics and Computing | 2017年 / 53卷
关键词
Cyclic code; Exponential sum; Weight distribution ; Sequence family; Correlation distribution;
D O I
暂无
中图分类号
学科分类号
摘要
For two odd integers l, k with 0<l<k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<l<k$$\end{document} and gcd(l,k)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (l,k)=1$$\end{document}, let m=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2k$$\end{document} and d=2lk+12l+1+2(2m-1)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{2^{lk}+1}{2^l+1}+\frac{2(2^m-1)}{3}$$\end{document}. In this paper, we determine the value distribution of the exponential sum ∑x∈F2m(-1)Tr1m(ax+bxd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in \mathbb {F}_{2^m}}(-1)^{\mathrm {Tr}_1^m(ax+bx^d)}$$\end{document}. As applications, the weight distribution of a class of binary cyclic codes is settled. Second, we determine the correlation distribution among sequences in a sequence family.
引用
收藏
页码:733 / 746
页数:13
相关论文
共 50 条
  • [31] Two classes of binary cyclic codes and their weight distributions
    Zeng, Xueqiang
    Fan, Cuiling
    Zeng, Qi
    Qi, Yanfeng
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (01) : 49 - 61
  • [32] A CLASS OF GENERALIZED CYCLIC CODES
    刘卓军
    林东岱
    Acta Mathematicae Applicatae Sinica(English Series), 2000, (01) : 53 - 58
  • [33] SEVERAL INFINITE FAMILIES OF BINARY CYCLIC CODES WITH SQUARE-ROOT-LIKE LOWER BOUNDS
    Zhang, Xiuyu
    Zhu, Shixin
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [34] Some Punctured Codes of Several Families of Binary Linear Codes
    Wang, Xiaoqiang
    Zheng, Dabin
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5133 - 5148
  • [35] Parameters of several families of binary duadic codes and their related codes
    Liu, Hai
    Li, Chengju
    Qian, Haifeng
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (01) : 1 - 12
  • [36] Parameters of several families of binary duadic codes and their related codes
    Hai Liu
    Chengju Li
    Haifeng Qian
    Designs, Codes and Cryptography, 2024, 92 : 1 - 12
  • [37] The Walsh transform of a class of monomial functions and cyclic codes
    Li, Chengju
    Yue, Qin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2015, 7 (02): : 217 - 228
  • [38] Several families of irreducible constacyclic and cyclic codes
    Zhonghua Sun
    Xiaoqiang Wang
    Cunsheng Ding
    Designs, Codes and Cryptography, 2023, 91 : 2821 - 2843
  • [39] The weight distributions of a class of cyclic codes
    Xiong, Maosheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) : 933 - 945
  • [40] The Weight Enumerator of a Class of Cyclic Codes
    Ma, Changli
    Zeng, Liwei
    Liu, Yang
    Feng, Dengguo
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 397 - 402