A class of binary cyclic codes and sequence families

被引:0
作者
Hua Liang
Wenbing Chen
Yuansheng Tang
机构
[1] Yangzhou University,School of Mathematical Sciences
[2] Huaiyin Normal University,School of Mathematical Sciences
[3] Anqing Normal University,School of Mathematics and Computation Science
来源
Journal of Applied Mathematics and Computing | 2017年 / 53卷
关键词
Cyclic code; Exponential sum; Weight distribution ; Sequence family; Correlation distribution;
D O I
暂无
中图分类号
学科分类号
摘要
For two odd integers l, k with 0<l<k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<l<k$$\end{document} and gcd(l,k)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (l,k)=1$$\end{document}, let m=2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2k$$\end{document} and d=2lk+12l+1+2(2m-1)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{2^{lk}+1}{2^l+1}+\frac{2(2^m-1)}{3}$$\end{document}. In this paper, we determine the value distribution of the exponential sum ∑x∈F2m(-1)Tr1m(ax+bxd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in \mathbb {F}_{2^m}}(-1)^{\mathrm {Tr}_1^m(ax+bx^d)}$$\end{document}. As applications, the weight distribution of a class of binary cyclic codes is settled. Second, we determine the correlation distribution among sequences in a sequence family.
引用
收藏
页码:733 / 746
页数:13
相关论文
共 50 条
  • [21] On the weight distributions of a class of cyclic codes
    Liu, Hongwei
    Wang, Xiaoqiang
    Zheng, Dabin
    DISCRETE MATHEMATICS, 2018, 341 (03) : 759 - 771
  • [22] On the covering radii of a class of binary primitive cyclic codes
    Tutdere, Seher
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (01): : 20 - 26
  • [23] THREE FAMILIES OF BINARY CYCLIC CODES WITH GOOD LOWER BOUNDS
    Sun, Zhonghua
    Li, Ling
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025,
  • [24] The weight distributions of two classes of binary cyclic codes
    Wang, Xiaoqiang
    Zheng, Dabin
    Hu, Lei
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 192 - 207
  • [25] The Weight Enumerator of Three Families of Cyclic Codes
    Zhou, Zhengchun
    Zhang, Aixian
    Ding, Cunsheng
    Xiong, Maosheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 6002 - 6009
  • [26] INFINITE FAMILIES OF 2-DESIGNS FROM TWO CLASSES OF BINARY CYCLIC CODES WITH THREE NONZEROS
    Du, Xiaoni
    Wang, Rong
    Tang, Chunming
    Wang, Qi
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (01) : 157 - 168
  • [27] The weight distribution of a class of p-ary cyclic codes
    Zeng, Xiangyong
    Hu, Lei
    Jiang, Wenfeng
    Yue, Qin
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) : 56 - 73
  • [28] A CLASS OF p-ARY CYCLIC CODES AND THEIR WEIGHT ENUMERATORS
    Yu, Long
    Liu, Hongwei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (02) : 437 - 457
  • [29] Two classes of binary cyclic codes and their weight distributions
    Xueqiang Zeng
    Cuiling Fan
    Qi Zeng
    Yanfeng Qi
    Applicable Algebra in Engineering, Communication and Computing, 2021, 32 : 49 - 61
  • [30] A class of generalized cyclic codes
    Liu Zhuo-jun
    Lin Dong-dai
    Acta Mathematicae Applicatae Sinica, 2000, 16 (1) : 53 - 58