共 50 条
Equidistribution of Rational Matrices in their Conjugacy Classes
被引:0
|作者:
Yves Benoist
Hee Oh
机构:
[1] DMA-ENS,Math 253
[2] Caltech,37
[3] Brown University,Mathematics Department
来源:
GAFA Geometric And Functional Analysis
|
2007年
/
17卷
关键词:
Equidistribution;
conjugacy classes;
Hecke operators;
rational matrices;
Hecke points;
11D45;
37A17;
37A25;
37A45;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let G be a connected simply connected almost\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \mathbb{Q} $$
\end{document}-simple algebraic group with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ G \,{\text{: = }}{\mathbf{G}}{\text{(}}\mathbb{R}{\text{)}} $$
\end{document} non-compact and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \Gamma \, \subset \,{\mathbf{G}}_{\mathbb{Q}} $$
\end{document} a cocompact congruence subgroup. For any homogeneous manifold \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ x_{0} H\, \subset \,\Gamma \backslash G $$
\end{document} of finite volume, and a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ a\, \in \,{\mathbf{G}}_{\mathbb{Q}} $$
\end{document}, we show that the Hecke orbit Ta(x0H) is equidistributed on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \Gamma \backslash G $$
\end{document} as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ {\text{deg}}(a)\, \to \,\infty $$
\end{document}, provided H is a non-compact commutative reductive subgroup of G. As a corollary, we generalize the equidistribution result of Hecke points ([COU], [EO1]) to homogeneous spaces G/H. As a concrete application, we describe the equidistribution result in the rational matrices with a given characteristic polynomial.
引用
收藏
页码:1 / 32
页数:31
相关论文