Equidistribution of Rational Matrices in their Conjugacy Classes

被引:0
|
作者
Yves Benoist
Hee Oh
机构
[1] DMA-ENS,Math 253
[2] Caltech,37
[3] Brown University,Mathematics Department
来源
GAFA Geometric And Functional Analysis | 2007年 / 17卷
关键词
Equidistribution; conjugacy classes; Hecke operators; rational matrices; Hecke points; 11D45; 37A17; 37A25; 37A45;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected simply connected almost\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{Q} $$ \end{document}-simple algebraic group with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ G \,{\text{: = }}{\mathbf{G}}{\text{(}}\mathbb{R}{\text{)}} $$ \end{document} non-compact and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Gamma \, \subset \,{\mathbf{G}}_{\mathbb{Q}} $$ \end{document} a cocompact congruence subgroup. For any homogeneous manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ x_{0} H\, \subset \,\Gamma \backslash G $$ \end{document} of finite volume, and a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ a\, \in \,{\mathbf{G}}_{\mathbb{Q}} $$ \end{document}, we show that the Hecke orbit Ta(x0H) is equidistributed on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Gamma \backslash G $$ \end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {\text{deg}}(a)\, \to \,\infty $$ \end{document}, provided H is a non-compact commutative reductive subgroup of G. As a corollary, we generalize the equidistribution result of Hecke points ([COU], [EO1]) to homogeneous spaces G/H. As a concrete application, we describe the equidistribution result in the rational matrices with a given characteristic polynomial.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 50 条