Holography from lattice N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills

被引:0
作者
Simon Catterall
Joel Giedt
Goksu Can Toga
机构
[1] Syracuse University,Department of Physics
[2] Department of Physics and Astronomy,undefined
[3] RPI,undefined
关键词
Lattice Quantum Field Theory; Supersymmetric Gauge Theory; Wilson; ’t Hooft and Polyakov loops; Algorithms and Theoretical Developments;
D O I
10.1007/JHEP08(2023)084
中图分类号
学科分类号
摘要
In this paper we use lattice simulation to study four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 124 and for ’t Hooft couplings up to λ = 40.0. Our lattice action is based on a discretization of the Marcus or GL twist of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.
引用
收藏
相关论文
共 43 条
[11]  
Nishimura J(2018)undefined JHEP 02 2896-undefined
[12]  
Takeuchi S(2020)undefined Phys. Rev. D 102 004-undefined
[13]  
Hanada M(2012)undefined JHEP 11 undefined-undefined
[14]  
Miwa A(2014)undefined Phys. Rev. D 90 undefined-undefined
[15]  
Nishimura J(2015)undefined JHEP 07 undefined-undefined
[16]  
Takeuchi S(1995)undefined Nucl. Phys. B 452 undefined-undefined
[17]  
Catterall S(2007)undefined Commun. Num. Theor. Phys. 1 undefined-undefined
[18]  
Wiseman T(1998)undefined Phys. Rev. Lett. 80 undefined-undefined
[19]  
Catterall S(2001)undefined J. Math. Phys. 42 undefined-undefined
[20]  
Wiseman T(2009)undefined JHEP 08 undefined-undefined