Holography from lattice N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills

被引:0
作者
Simon Catterall
Joel Giedt
Goksu Can Toga
机构
[1] Syracuse University,Department of Physics
[2] Department of Physics and Astronomy,undefined
[3] RPI,undefined
关键词
Lattice Quantum Field Theory; Supersymmetric Gauge Theory; Wilson; ’t Hooft and Polyakov loops; Algorithms and Theoretical Developments;
D O I
10.1007/JHEP08(2023)084
中图分类号
学科分类号
摘要
In this paper we use lattice simulation to study four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills (SYM) theory. We have focused on the three color theory on lattices of size 124 and for ’t Hooft couplings up to λ = 40.0. Our lattice action is based on a discretization of the Marcus or GL twist of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM and retains one exact supersymmetry for non-zero lattice spacing. We show that lattice theory exists in a single non-Abelian Coulomb phase for all ’t Hooft couplings. Furthermore the static potential we obtain from correlators of Polyakov lines is in good agreement with that obtained from holography — specifically the potential has a Coulombic form with a coefficent that varies as the square root of the ’t Hooft coupling.
引用
收藏
相关论文
共 43 条
[1]  
Catterall S(2009) = 4 Phys. Rept. 484 71-undefined
[2]  
Kaplan DB(2008) = 4 JHEP 01 048-undefined
[3]  
Unsal M(2016) = 4 Phys. Rev. D 94 077-undefined
[4]  
Catterall S(2008)undefined Phys. Rev. Lett. 100 022-undefined
[5]  
Hanada M(2009)undefined Phys. Rev. Lett. 102 042-undefined
[6]  
Hyakutake Y(2008)undefined Phys. Rev. D 78 072-undefined
[7]  
Ishiki G(2010)undefined JHEP 04 057-undefined
[8]  
Nishimura J(2010)undefined JHEP 12 331-undefined
[9]  
Anagnostopoulos KN(2016)undefined Phys. Rev. D 94 1-undefined
[10]  
Hanada M(2018)undefined Phys. Rev. D 97 4859-undefined