New weighted norm inequalities for Calderón–Zygmund operators with kernels of Dini’s type and their commutators

被引:1
作者
Xi Hu
Jiang Zhou
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Proceedings - Mathematical Sciences | 2019年 / 129卷
关键词
New weight; pseudodifferential operators; commutators; new BMO; 42B25; 42B20; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce certain classes of Calderón–Zygmund operators with kernels of Dini’s type including pseudodifferential operators with smooth symbols. Applying a class of new weight functions, we establish some weighted norm inequalities for certain classes of Calderón–Zygmund operators with kernels of Dini’s type. In addition, new BMO spaces with respect to the class of new weight functions are introduced. Naturally, the pointwise, weighted strong type and endpoint LlogL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\,\mathrm {log}\,L$$\end{document} type estimates for the commutators with the new BMO functions are also obtained.
引用
收藏
相关论文
共 20 条
[1]  
Bongioanni B(2011)Commutators of Riesz transforms related to Schrödinger operators J. Fourier Anal. Appl. 17 115-134
[2]  
Harboure E(1978)Commutators, singular integrals on Lipschitz curves and applications Proc. Int. Congr. Math. 1 85-96
[3]  
Salinas O(1975)On commutators of singular integrals and bilinear singular integrals Trans. Am. Math. Soc. 212 315-331
[4]  
Calderón AP(1984)A boundedness criterion for generalized Calderón–Zygmund operators Ann. Math. 120 371-397
[5]  
Coifman RR(2014)Multilinear Calderón–Zygmund operators with kernels of Dini’s type and applications Nonlinear Anal. Theory Methods Appl. 107 92-117
[6]  
Meyer Y(1995)Endpoint estimates for commutators of singular integral operators J. Funct. Anal. 128 163-185
[7]  
David G(2015)New weighted norm inequalities for cetain classes of multilinear operators and their iterated commutators Potential Anal. 43 1-28
[8]  
Journé JL(2012)Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators J. Funct. Anal. 262 1603-1629
[9]  
Lu GZ(2011)Extrapolation from Arkiv för Matematik 52 175-202
[10]  
Zhang P(2012), vector-valued inequalities and applications in the Schrödinger settings Acta Math. Sin. Engl. Ser. 28 255-266