The aim of this paper is to describe the solution (f, g) of the equation
⟨f(x)|g(y)⟩=⟨x|y⟩,x,y∈D,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle{f(x)}|{g(y)}\rangle=\langle{x}|{y}\rangle,\quad x,y\in D,$$\end{document}where f,g:D→Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f,g\colon D\to Y}$$\end{document}, X, Y are Hilbert spaces over the same field K∈{R,C}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}}$$\end{document}, D is a dense subspace of X.