Quantitative real-time PCR with SYBR Green detection to assess gene duplication in insects: Study of gene dosage in Drosophila melanogaster (Diptera) and in Ostrinia nubilalis (Lepidoptera)

被引:18
作者
Bel Y. [1 ]
Ferré J. [1 ]
Escriche B. [1 ]
机构
[1] Department of Genetics, University of Valencia, 46100-Burjassot, Valencia
关键词
Gene Dose; Tandem Duplication; Insecticidal Protein; Lepidopteran Species; qPCR Technique;
D O I
10.1186/1756-0500-4-84
中图分类号
学科分类号
摘要
Background: The accurate determination of the number of copies of a gene in the genome (gene dosage) is essential for a number of genetic analyses. Quantitative real time PCR (qPCR) with TaqMan detection has shown advantages over traditional Southern-blot and FISH techniques, however the high costs of the required labeled probes is an important limitation of this method. qPCR with SYBR Green I detection is a simple and inexpensive alternative, but it has never been applied to the determination of the copy number of low copy number genes in organisms with high allelic variability (as some insects), where a very small margin of error is essential. Findings. We have tested the suitability of the qPCR with SYBR Green I detection methodology for the detection of low copy number genes in two insects: the genetically well characterized Drosophila melanogaster (Diptera) and the poor genetically characterized Ostrinia nubilalis (Lepidoptera). The system was applied to determine the copy number of: (1) the O. nubilalis cadherin gene, involved in the mode of action of Bacillus thuringiensis toxins, which showed indirect evidence of duplication, and (2) the D. melanogaster BarH1 and BarH2 genes, located within the Bar region of the X chromosome, to clearly determine whether they both are covered by the tandem duplication in the classical Bar (B1) mutant. Our results showed that the O. nubilalis cadherin gene is an autosomal single copy gene and that BarH1, but not BarH2, is duplicated in the Drosophila B1 mutant. Conclusions: This work shows that qPCR with SYBR Green I detection can be specific and accurate enough to distinguish between one and two gene copies per haploid genome of genes with high allelic variability. The technique is sensitive enough to give reliable results with a minimum amount of sample (DNA from individual thoraxes) and to detect gene duplications in tandem. © 2011 Escriche et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 33 条
[1]  
Redon R., Ishikawa S., Fitch K.R., Feuk L., Perry G.H., Andrews T.D., Fiegler H., Shapero M.H., Carson A.R., Chen W., Cho E.K., Dallaire S., Freeman J.L., Gonzalez J.R., Gratacos M., Huang J., Kalaitzopoulos D., Komura D., MacDonald J.R., Marshall C.R., Mei R., Montgomery L., Nishimura K., Okamura K., Shen F., Somerville M.J., Tchinda J., Valsesia A., Woodwark C., Yang F., Zhang J., Zerjal T., Zhang J., Armengol L., Conrad D.F., Estivill X., Tyler-Smith C., Carter N.P., Aburatani H., Lee C., Jon
[2]  
Knuutila S., Bjorkqvist A.-M., Autio K., Tarkkanen M., Wolf M., Monni O., Szymanska J., Larramendy M.L., Tapper J., Pere H., El-Rifai W., Hemmer S., Wasenius V.-M., Vidgren V., Zhu Y., DNA copy number amplifications in human neoplasms: Review of comparative genomic hybridization studies, American Journal of Pathology, 152, 5, pp. 1107-1123, (1998)
[3]  
Knuutila S., Aalto Y., Autio K., Bjorkqvist A.-M., El-Rifai W., Hemmer S., Huhta T., Kettunen E., Kiuru-Kuhlefelt S., Larramendy M.L., Lushnikova T., Monni O., Pere H., Tapper J., Tarkkanen M., Varis A., Wasenius V.-M., Wolf M., Zhu Y., DNA copy number losses in human neoplasms, American Journal of Pathology, 155, 3, pp. 683-694, (1999)
[4]  
Claycomb J.M., MacAlpine D.M., Evans J.G., Bell S.P., Orr-Weaver T.L., Visualization of replication initiation and elongation in Drosophila, J Cell Biol. 202, 159, pp. 225-236
[5]  
Vontas J.G., Small G.J., Hemingway J., Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistent strains of the brown planthopper, Nilaparvata lugens, Insect Molecular Biology, 9, 6, pp. 655-660, (2000)
[6]  
Field L.M., Blackman R.L., Tyler-Smith C., Devonshire A.L., Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer), Biochemical Journal, 339, 3, pp. 737-742, (1999)
[7]  
Mouches C., Pasteur N., Berge J.B., Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science, 233, 4765, pp. 778-780, (1986)
[8]  
Chiang P.-W., Song W.-J., Wu K.-Y., Korenberg J.R., Fogel E.J., Van Keuren M.L., Lashkari D., Kurnit D.M., Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance, Genome Research, 6, 10, pp. 1013-1026, (1996)
[9]  
Chiang P.-W., Wei W.-L., Gibson K., Bodmer R., Kurnit D.M., A fluorescent quantitative PCR approach to map gene deletions in the Drosophila genome, Genetics, 153, 3, pp. 1313-1316, (1999)
[10]  
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T., The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments, Clin Chem, 55, pp. 611-622, (2009)