Multistability in symmetric chaotic systems

被引:0
作者
C. Li
W. Hu
J. C. Sprott
X. Wang
机构
[1] Nanjing University of Information Science and Technology,School of Electronic and Information Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Electronic and Information Engineering
[3] University of Wisconsin-Madison,Department of Physics
来源
The European Physical Journal Special Topics | 2015年 / 224卷
关键词
Equilibrium Point; Lyapunov Exponent; European Physical Journal Special Topic; Strange Attractor; Symmetric System;
D O I
暂无
中图分类号
学科分类号
摘要
Chaotic dynamical systems that are symmetric provide the possibility of multistability as well as an independent amplitude control parameter.The Rössler system is used as a candidate for demonstrating the symmetry construction since it is an asymmetric system with a single-scroll attractor. Through the design of symmetric Rössler systems, a symmetric pair of coexisting strange attractors are produced, along with the desired partial or total amplitude control.
引用
收藏
页码:1493 / 1506
页数:13
相关论文
共 49 条
[1]  
Sprott J.C.(2013)Chaos Int. J. Bifurcat. Chaos 23 1350093-undefined
[2]  
Wang X.(2014)undefined J. Exp. Theor. Phys. 118 494-undefined
[3]  
Chen G.(2014)undefined Int. J. Bifurcat. Chaos 24 1450034-undefined
[4]  
Li C.(2013)undefined Int. J. Bifurcat. Chaos 23 1350199-undefined
[5]  
Sprott J.C.(2014)undefined Phys. Lett. A 378 1361-undefined
[6]  
Thio W.(1998)undefined Solitons Fractals 9 1439-undefined
[7]  
Li C.(2011)undefined Int. J. Bifur. Chaos 21 1907-undefined
[8]  
Sprott J.C.(2014)undefined Nonlinear Dyn. 78 2059-undefined
[9]  
Li C.(2008)undefined IET Signal Processing 2 423-undefined
[10]  
Sprott J.C.(1990)undefined Phys. Rev. Lett. 64 821-undefined