On a Universal Solution to the Reflection Equation

被引:0
作者
J. Donin
P. P. Kulish
A. I. Mudrov
机构
[1] Bar Ilan University,Department of Mathematics
[2] Steklov Mathematical Institute,St.Petersburg Department
来源
Letters in Mathematical Physics | 2003年 / 63卷
关键词
fusion procedure; reflection equation; twist;
D O I
暂无
中图分类号
学科分类号
摘要
For a given quasi-triangular Hopf algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document}, we study relations between the braided group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde {\mathcal{H}}^* $$ \end{document} and Drinfeld's twist. We show that the braided bialgebra structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde {\mathcal{H}}^* $$ \end{document} is naturally described by means of twisted tensor powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} and their module algebras. We introduce a universal solution to the reflection equation (RE) and deduce a fusion prescription for RE-matrices.
引用
收藏
页码:179 / 194
页数:15
相关论文
共 22 条
  • [1] Drinfeld V.G.(1990)Quasi-Hopf algebras Leningrad Math. J. 1 1419-1457
  • [2] Delius G.W.(2002)Solutions of the boundary Yang-Baxter equation for arbitrary spin J. Phys. A: Math. Gen. 35 L341-L348
  • [3] Nepomechie R.I.(1990)Quantization of Lie groups and Lie algebras Leningrad Math. J. 1 193-226
  • [4] Faddeev L.(1981)Yang-Baxter equation and representation theory Lett. Math. Phys. 5 393-403
  • [5] Reshetikhin N.(1992)Algebraic structure related to the reflection equation J. Phys. A 25 5963-5975
  • [6] Takhtajan L.(1993)Covariance properties of reflection equation algebras Progr. Theor. Phys. 89 741-761
  • [7] Kulish P.P.(1993)Constant solutions of reflection equations and quantum groups J. Math. Phys. 34 286-304
  • [8] Reshetikhin N.(2002)Characters of theU Lett. Math. Phys 60 283-291
  • [9] Sklyanin E.K.(1992)(sl( J. Phys. A: Math. Gen. 25 2533-2543
  • [10] Kulish P.P.(1988)))-reflection equation algebra J. Geom. Phys. 5 533-550