Generalized Weyl’s theorem and spectral continuity for quasi-class (A, k) operators

被引:0
作者
Fugen Gao
Xiaochun Fang
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Tongji University,Department of Mathematics
来源
Acta Scientiarum Mathematicarum | 2012年 / 78卷 / 1-2期
关键词
algebraically quasi-class (; ) operator; generalized Weyl’s theorem; generalized ; -Weyl’s theorem; continuity of the spectrum; 47A10; 47A53; 47B20;
D O I
10.1007/BF03651347
中图分类号
学科分类号
摘要
If T or T* is an algebraically quasi-class (A, k) operator acting on an infinite-dimensional separable Hilbert space, then we prove that generalized Weyl’s theorem holds for f(T) for every f ∈ H(σ(T)), where H(σ(T)) denotes the set of all analytic functions in a neighborhood of σ(T). Moreover, if T* is an algebraically quasi-class (A, k) operator, then generalized a-Weyl’s theorem holds for f(T) for every f ∈ H(σ(T)). Also, we prove that the spectrum, Weyl spectrum and Browder spectrum are continuous on the class of all quasi-class (A, k) operators.
引用
收藏
页码:241 / 250
页数:9
相关论文
共 46 条
[1]  
Aiena P(2010)Weyl type theorems for left and right polaroid operators Integral Equations Operator Theory 66 1-20
[2]  
Aponte E(1990)On Integral Equations Operator Theory 13 307-315
[3]  
Balzan E(1999)-hyponormal operators for 0 < Integral Equations Operator Theory 34 244-249
[4]  
Aluthge A(2002) < 1 J. Math. Anal. Appl. 272 596-603
[5]  
Berkani M(2004)On a class of quasi-Fredholm operators J. Aust. Math. Soc. 76 291-302
[6]  
Berkani M(2003)B-Weyl spectrum and poles of the resolvent Acta Sci. Math. (Szeged) 69 359-376
[7]  
Berkani M(1962)Generalized Weyl’s theorem and hyponormal operators Proc. Amer. Math. Soc. 13 111-114
[8]  
Arroud A(1979)Weyl type theorems for bounded linear operators Integral Equation Operator Theory 2 174-198
[9]  
Berkani M(2007)Approximate proper vectors J. Math. Anal. Appl. 336 1424-1442
[10]  
Koliha JJ(1998)Operators that are points of spectral continuity Vesnik Math. 50 71-74