A froth image segmentation method via generative adversarial networks with multi-scale self-attention mechanism

被引:0
|
作者
Yuze Zhong
Zhaohui Tang
Hu Zhang
Yongfang Xie
Xiaoliang Gao
机构
[1] Central South University,School of Automation
[2] Changsha University,College of Computer Science and Engineering
来源
Multimedia Tools and Applications | 2024年 / 83卷
关键词
Bubble size measurement; Froth flotation; Generative adversarial network; Self-attention mechanism; Semi-supervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
Froth image segmentation is the most popular method for bubble size measurement. However, in the froth flotation, froth images are with high-complexity and labeling the froth images with true bubble edges requires high human-labors and professional experiences. This causes that current convolutional neural network-based segmentation methods cannot segment well the bubbles accurately. Therefore, a generative adversarial network with multi-scale self-attention mechanism is proposed for froth image segmentation. First, to reduce the high requirements of true labeled samples, generative adversarial network was used in the framework to make the proposed segmentation model run in a self-supervised learning manner. Next, to strengthen the learning ability of the generator to detect bubble boundaries with different sizes, the receptive field is enlarged through the convolutional down-sampling operation and self-attention gating units are added to different layers. Finally, according to the output image of the generator, true labeled image and original input image, the discriminator outputs a confidence map to improve the parameters of generator and determines final edges. Many experiments were implemented to validate the effectiveness of the proposed method. Compared with other current convolutional neural network-based segmentation methods, the accuracy of the proposed model has been increased at least by 5%.
引用
收藏
页码:19663 / 19682
页数:19
相关论文
共 50 条
  • [21] Tea Disease Detection Method with Multi-scale Self-attention Feature Fusion
    Sun Y.
    Wu F.
    Yao J.
    Zhou Q.
    Shen J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (12): : 309 - 315
  • [22] SA-CapsGAN: Using Capsule Networks with embedded self-attention for Generative Adversarial Network
    Sun, Guangcong
    Ding, Shifei
    Sun, Tongfeng
    Zhang, Chenglong
    NEUROCOMPUTING, 2021, 423 (423) : 399 - 406
  • [23] Multi-scale dual-modal generative adversarial networks for text-to-image synthesis
    Bin Jiang
    Yun Huang
    Wei Huang
    Chao Yang
    Fangqiang Xu
    Multimedia Tools and Applications, 2023, 82 : 15061 - 15077
  • [24] Multi-scale generative adversarial inpainting network based on cross-layer attention transfer mechanism
    Shao, Mingwen
    Zhang, Wentao
    Zuo, Wangmeng
    Meng, Deyu
    KNOWLEDGE-BASED SYSTEMS, 2020, 196 (196)
  • [25] Multi-scale dual-modal generative adversarial networks for text-to-image synthesis
    Jiang, Bin
    Huang, Yun
    Huang, Wei
    Yang, Chao
    Xu, Fangqiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (10) : 15061 - 15077
  • [26] Multi-scale generative adversarial network for image super-resolution
    Jiang Daihong
    Zhang Sai
    Dai Lei
    Dai Yueming
    Soft Computing, 2022, 26 : 3631 - 3641
  • [27] Multi-scale generative adversarial network for image super-resolution
    Daihong, Jiang
    Sai, Zhang
    Lei, Dai
    Yueming, Dai
    SOFT COMPUTING, 2022, 26 (08) : 3631 - 3641
  • [28] A Fast Multi-Scale Generative Adversarial Network for Image Compressed Sensing
    Li, Wenzong
    Zhu, Aichun
    Xu, Yonggang
    Yin, Hongsheng
    Hua, Gang
    ENTROPY, 2022, 24 (06)
  • [29] Generative Adversarial Network Based on Self-Attention Mechanism for Automatic Page Layout Generation
    Sun, Peng
    Liu, Xiaomei
    Weng, Liguo
    Liu, Ziheng
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [30] Light-Weight Self-Attention Augmented Generative Adversarial Networks for Speech Enhancement
    Li, Lujun
    Lu, Zhenxing
    Watzel, Tobias
    Kurzinger, Ludwig
    Rigoll, Gerhard
    ELECTRONICS, 2021, 10 (13)