An Ideal Class to Construct Solutions for Skew Brownian Motion Equations

被引:0
作者
Fulgence Eyi Obiang
Octave Moutsinga
Youssef Ouknine
机构
[1] Université des Sciences et Techniques de Masuku,URMI Laboratory, Département de Mathématiques et Informatique, Faculté des Sciences
[2] Cadi Ayyad University,LIBMA Laboratory, Department of Mathematics, Faculty of Sciences Semlalia
[3] Hassan II Academy of Sciences and Technologies,undefined
[4] Africa Business School,undefined
[5] Mohammed VI Polytechnic,undefined
来源
Journal of Theoretical Probability | 2022年 / 35卷
关键词
Class ; Skew Brownian motion; Balayage formula; Honest time; Relative martingales; 60G07; 60G20; 60G46; 60G48;
D O I
暂无
中图分类号
学科分类号
摘要
This paper contributes to the study of stochastic processes of the class (Σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Sigma )$$\end{document}. First, we extend the notion of the above-mentioned class to càdlàg semi-martingales, whose finite variation part is considered càdlàg instead of continuous. Thus, we present some properties and propose a method to characterize such stochastic processes. Second, we investigate continuous processes of the class (Σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Sigma )$$\end{document}. More precisely, we derive a series of new characterization results. In addition, we construct solutions for skew Brownian motion equations using continuous stochastic processes of the class (Σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Sigma )$$\end{document}.
引用
收藏
页码:894 / 916
页数:22
相关论文
共 25 条
  • [1] Azéma J(1992)Sur les zéros des martingales continues Séminaire de probabilités (Strasbourg) 26 248-306
  • [2] Yor M(2013)On the time inhomogeneous skew Brownian motion Bulletin des Sciences Mathématiques 137 835-850
  • [3] Bouhadou S(2012)on the existence of a time inhomogeneous skew Brownian motion and some related laws Electron. J. Probab. 17 1-27
  • [4] Ouknine Y(2017)Some contributions to the study of stochastic processes of the classes Stochastics 89 1253-1269
  • [5] Etoré P(1981) and Ann. Probab. 9 309-313
  • [6] Martinez M(1979)On skew Brownian motion Séminaire de probabilités (Strasbourg) 13 478-487
  • [7] Eyi-Obiang F(2010)Sur une formule de la théorie du balayage C. R. Math. Acad. Sci. Paris 348 311-316
  • [8] Ouknine Y(2011)A new construction of the Publ. Res. Inst. Math. Sci. (Kyoto Univ.) 47 911-936
  • [9] Moutsinga O(2006)- finite measures associated with submartingales of class Stoch. Process. Appl. 116 917-938
  • [10] Trutnau G(2006)On some properties of a universal sigma finite measure associated with a remarkable class of submartingales J. Theor. Probab. 19 931-949