On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document}

被引:0
作者
Yan Li
Zhongwei Tang
Ning Zhou
机构
[1] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, MOE
关键词
Fractional Laplacian; Nirenberg problem; Blow up analysis; 35B38; 35B44; 35J20;
D O I
10.1007/s12220-023-01291-0
中图分类号
学科分类号
摘要
In this paper, we are devoted to establishing the compactness and existence results of the solutions to the fractional Nirenberg problem for n=3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3,$$\end{document}σ=1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1/2,$$\end{document} when the prescribing σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-curvature function satisfies the (n-2σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-2\sigma )$$\end{document}-flatness condition near its critical points. The compactness results are new and optimal. In addition, we obtain a degree-counting formula of all solutions. From our results, we can know where blow up occur. Moreover, for any finite distinct points, the sequence of solutions that blow up precisely at these points can be constructed. We extend the results of Li (Commun Pure Appl Math 49:541–597, 1996) from the local problem to nonlocal cases.
引用
收藏
相关论文
共 55 条
  • [1] Abdelhedi W(2013)On a Nirenberg-type problem involving the square root of the Laplacian J. Funct. Anal. 265 2937-2955
  • [2] Chtioui H(2016)A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I Anal. PDE 9 1285-1315
  • [3] Abdelhedi W(1996)An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension Duke Math. J. 81 323-466
  • [4] Chtioui H(1991)The scalar-curvature problem on the standard three-dimensional sphere J. Funct. Anal. 95 106-172
  • [5] Hajaiej H(2012)Non-local gradient dependent operators Adv. Math. 230 1859-1894
  • [6] Bahri A(2007)An extension problem related to the fractional Laplacian Commun. Partial Differ. Equ. 32 1245-1260
  • [7] Bahri A(2011)Fractional Laplacian in conformal geometry Adv. Math. 226 1410-1432
  • [8] Coron J(1993)The scalar curvature equation on 2-and 3-spheres Calc. Var. Partial Differ. Equ. 1 205-229
  • [9] Bjorland C(1987)Prescribing Gaussian curvature on Acta Math. 159 215-259
  • [10] Caffarelli L(2016)Existence results for the fractional Nirenberg problem J. Funct. Anal. 270 4043-4086