An enhanced real-time human pose estimation method based on modified YOLOv8 framework

被引:17
|
作者
Dong, Chengang [1 ]
Du, Guodong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Nanjing 210000, Jiangsu, Peoples R China
关键词
Deep learning; Human pose estimation; Attention mechanisms; YOLOv8; Feature pyramid network;
D O I
10.1038/s41598-024-58146-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The objective of human pose estimation (HPE) derived from deep learning aims to accurately estimate and predict the human body posture in images or videos via the utilization of deep neural networks. However, the accuracy of real-time HPE tasks is still to be improved due to factors such as partial occlusion of body parts and limited receptive field of the model. To alleviate the accuracy loss caused by these issues, this paper proposes a real-time HPE model called CCAM - Person \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {CCAM-Person}}$$\end{document} based on the YOLOv8 framework. Specifically, we have improved the backbone and neck of the YOLOv8x-pose real-time HPE model to alleviate the feature loss and receptive field constraints. Secondly, we introduce the context coordinate attention module (CCAM) to augment the model's focus on salient features, reduce background noise interference, alleviate key point regression failure caused by limb occlusion, and improve the accuracy of pose estimation. Our approach attains competitive results on multiple metrics of two open-source datasets, MS COCO 2017 and CrowdPose. Compared with the baseline model YOLOv8x-pose, CCAM-Person improves the average precision by 2.8% and 3.5% on the two datasets, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] HDA-pose: a real-time 2D human pose estimation method based on modified YOLOv8
    Dong, Chengang
    Tang, Yuhao
    Zhang, Liyan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 5823 - 5839
  • [2] KSL-POSE: A Real-Time 2D Human Pose Estimation Method Based on Modified YOLOv8-Pose Framework
    Lu, Tianyi
    Cheng, Ke
    Hua, Xuecheng
    Qin, Suning
    SENSORS, 2024, 24 (19)
  • [3] Real-Time Waste Detection Based on YOLOv8
    Mehadjbia, Abdelhak
    Slaoui-Hasnaoui, Fouad
    4TH INTERDISCIPLINARY CONFERENCE ON ELECTRICS AND COMPUTER, INTCEC 2024, 2024,
  • [4] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE ACCESS, 2024, 12 : 136280 - 136296
  • [5] A Real-Time Fabric Defect Detection Method Based on Improved YOLOv8
    Jin, Yanxia
    Liu, Xinyu
    Nan, Keliang
    Wang, Songsong
    Wang, Ting
    Zhang, Zhuangwei
    Zhang, Xiaozhu
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [6] η-repyolo: real-time object detection method based on η-RepConv and YOLOv8
    Feng, Shuai
    Qian, Huaming
    Wang, Huilin
    Wang, Wenna
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [7] An enhanced framework for real-time dense crowd abnormal behavior detection using YOLOv8
    Rabia Nasir
    Zakia Jalil
    Muhammad Nasir
    Tahani Alsubait
    Maria Ashraf
    Sadia Saleem
    Artificial Intelligence Review, 58 (7)
  • [8] Real-Time Vehicles Detection with YOLOv8
    Lin, Chih-Jer
    Lee, Chi-Mo
    2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024, 2024, : 805 - 806
  • [9] Improved real-time object detection method based on YOLOv8: a refined approach
    Zhong, Jiaqi
    Qian, Huaming
    Wang, Huilin
    Wang, Wenna
    Zhou, Yipeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [10] SNW YOLOv8: improving the YOLOv8 network for real-time monitoring of lump coal
    Wu, Ligang
    Chen, Le
    Li, Jialong
    Shi, Jianhua
    Wan, Jiafu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)