Rigidity of higher rank abelian cocycles with values in diffeomorphism groups

被引:0
|
作者
A. Katok
V. Niţică
机构
[1] Pennsylvania State University,Department of Mathematics
[2] West Chester University,Department of Mathematics
[3] Institute of Mathematics of the Romanian Academy,undefined
来源
Geometriae Dedicata | 2007年 / 124卷
关键词
Rigidity; Cocycle; Cohomological equation; Higher-rank abelian actions; Diffeomorphism groups; Partially hyperbolic diffeomorphism; Cartan actions; 37D40; 37C85;
D O I
暂无
中图分类号
学科分类号
摘要
We consider cocycles over certain hyperbolic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^k}$$\end{document} actions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k\ge 2}$$\end{document} , and show rigidity properties for cocycles with values in a Lie group or a diffeomorphism group, which are close to identity on a set of generators, and are sufficiently smooth. The actions we consider are Cartan actions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(n,\mathbb{R})/\Gamma}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(n,\mathbb{C})/\Gamma}$$\end{document} , for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\ge 3}$$\end{document} , and Γ torsion free cocompact lattice. The results in this paper rely on a technique developed recently by D. Damjanović and A. Katok.
引用
收藏
页码:109 / 131
页数:22
相关论文
共 50 条