Equations in Banach spaces with a degenerate operator under a fractional derivative

被引:0
作者
V. E. Fedorov
D. M. Gordievskikh
M. V. Plekhanova
机构
[1] Chelyabinsk State University,
[2] South Ural State University (National Research University),undefined
来源
Differential Equations | 2015年 / 51卷
关键词
Banach Space; Cauchy Problem; Fractional Derivative; Convex Space; Caputo Fractional Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We study an inhomogeneous linear fractional differential equation in a Banach space with a degenerate operator under the derivative. In the case of relative p-boundedness of the pair of operators in the equation, we prove the unique solvability of the Cauchy and Showalter problems for it and represent the solution via operator functions of the Mittag-Leffler type. The abstract results obtained are used to study a class of initial–boundary value problems for partial differential equations of arbitrary fractional order with respect to time.
引用
收藏
页码:1360 / 1368
页数:8
相关论文
共 14 条
  • [1] Mainardi F.(1995)The Time Fractional Diffusion-Wave Equations Radiophys. and Quantum Electronics 38 13-24
  • [2] Balachandran K.(2012)Existence of Solutions of Abstract Fractional Integrodifferential Equations of Sobolev Type Comput. Math. Appl. 64 3406-3413
  • [3] Kiruthika S.(2012)Existence of Mild Solutions for Fractional Integrodifferential Equations of Sobolev Type with Nonlocal Conditions J. Math. Anal. Appl. 391 510-525
  • [4] Li F.(2013)A Class of Degenerate Fractional Evolution Systems in Banach Spaces Differ. Uravn. 49 1616-1622
  • [5] Liang J.(2004)Strongly Holomorphic Groups of Sobolev Type Linear Equations in Locally Convex Spaces Differ. Uravn. 40 702-712
  • [6] Xu H.-K.(2004)Holomorphic Resolving Semigroups of Sobolev Type Equations in Locally Convex Spaces Mat. Sb. 195 131-160
  • [7] Fedorov V.E.(2005)A Generalization of the Hille–Yosida Theorem to the Case of Degenerate Semigroups in Locally Convex Spaces Sibirsk. Mat. Zh. 46 426-448
  • [8] Debbouche A.(1960)On Basic Representations of the Theory of Filtration of Homogeneous Liquids in Cracked Solids Prikl. Mat. Mekh. 24 852-864
  • [9] Fedorov V.E.(undefined)undefined undefined undefined undefined-undefined
  • [10] Fedorov V.E.(undefined)undefined undefined undefined undefined-undefined