Modal Deduction in Second-Order Logic and Set Theory - II

被引:4
作者
Van Benthem J. [1 ]
D'Agostino G. [2 ]
Montanari A. [1 ]
Policriti A. [2 ]
机构
[1] ILLC, Universiteit Van Amsterdam, Plantage Muidergracht 24
[2] Dipaitimento di Malematica E Lufuriualica, Università di Udine, Via delle Scienze 206
关键词
Modal Deduction; Modal Logic; Second-Order Logic; Set theory; Translation Methods;
D O I
10.1023/A:1005037512998
中图分类号
学科分类号
摘要
In this paper, we generalize the set-theoretic translation method for polymodal logic introduced in [11] to extended modal logics. Instead of devising an ad-hoc translation for each logic, we develop a general framework within which a number of extended modal logics can be dealt with. We first extend the basic set-theoretic translation method to weak monadic second-order logic through a suitable change in the underlying set theory that connects up in interesting ways with constructibility; then, we show how to tailor such a translation to work with specific cases of extended modal logics. © 1998 Kluwer Academic Publishers.
引用
收藏
页码:387 / 420
页数:33
相关论文
共 23 条
  • [1] Aczel, P., (1988) Non-well-founded Sets, , CSLI, Lecture Notes No. 14
  • [2] Barwise, J., (1975) Admissible Sets and Structures, , Springer Verlag
  • [3] Barwise, J., Moss, L., (1996) Vicious Circles, , CSLI, Lecture Notes No. 60
  • [4] Van Benthem, J., Syntactic aspects of modal incompleteness theorems (1979) Theoria, 45, pp. 67-81
  • [5] Van Benthem, J., Doets, K., Higher-Order Logic (1983) Handbook of Philosophical Logic., 1, pp. 275-329. , D. Gabbay and F. Guenthner (eds.)
  • [6] D. Reidel Pub. Comp., DordrechtHolland
  • [7] Van Benthem, J., (1985) Modal Logic, and Classical Logic, , Bibliopolis, Napoli and Atlantic Heights (N.J.)
  • [8] Van Benthem, J., D'Agostino, G., Montanari, A., Policriti, A., Modal Deduction in Second-Order Logic and Set Theory - F (1997) Journal of Logic and Computation, 7 (2), pp. 251-265
  • [9] Van Benthem, J., D'Agostino, G., Montanari, A., Policriti, A., Modal deduction in Second-Order Logic and Set Theory - II (1996) Research Report, in the ILLC-series, ML-96-08, , University of Amsterdam, July
  • [10] Bernays, P., A system of axiomatic set theory. Part F (1937) Journal of Symbolic Logic, 2, pp. 65-77