Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

被引:0
作者
Shanghui Jia
Hehu Xie
Xiaobo Yin
Shaoqin Gao
机构
[1] Central University of Finance and Economics,School of Applied Mathematics
[2] LSEC,College of Mathematics and Computer
[3] ICMSEC,undefined
[4] Academy of Mathematics and Systems Science,undefined
[5] CAS,undefined
[6] Hebei University,undefined
来源
Applications of Mathematics | 2009年 / 54卷
关键词
Stokes eigenvalue problem; stream function-vorticity-pressure method; asymptotic expansion; extrapolation; a posteriori error estimates; nonconforming finite element methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q1rot and EQ1rot. Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 37 条
[1]  
Babuška I.(1987)Estimate for the errors in eigenvalue and eigenvector approximation by Galerkin methods with particular attention to the case of multiple eigenvalue SIAM J. Numer. Anal. 24 1249-1276
[2]  
Osborn J. F.(1989)Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems Math. Comput. 52 275-297
[3]  
Babuška I.(1979)Error estimates for finite element method solution of the Stokes problem in the primitive variables Numer. Math. 33 211-224
[4]  
Osborn J. F.(2006)Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method Appl. Math. 51 73-88
[5]  
Bercovier M.(2007)Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme Adv. Comput. Math. 27 95-106
[6]  
Pironneau O.(1979)On a mixed finite element approximation of the Stokes problem. I. Convergence of the approximate solution Numer. Math. 33 397-424
[7]  
Chen W.(1984)Nonconforming elements in the mixed finite element method J. Comput. Math. 2 223-233
[8]  
Lin Q.(2008)Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer Methods Partial Differ. Equations 24 435-448
[9]  
Chen W.(1990)Conforming finite element approximation of the Stokes problem Banach Cent. Publ. 24 389-396
[10]  
Lin Q.(2008)New expansion of numerical eigenvalue for-Δ Math. Comput. 77 2061-2084