Calderón–Zygmund Operators and Commutators on Weighted Lorentz Spaces

被引:0
作者
María J. Carro
Hongliang Li
Javier Soria
Qinxiu Sun
机构
[1] Complutense University of Madrid,Department of Analysis and Applied Mathematics
[2] Zhejiang International Studies University,Department of Mathematics
[3] Complutense University of Madrid,Interdisciplinary Mathematics Institute (IMI), Department of Analysis and Applied Mathematics
[4] Zhejiang University of Science and Technology,Department of Mathematics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Calderón–Zygmund operators; Commutators; Weighted Lorentz spaces; 46E30; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
We find necessary conditions (which are also sufficient, for some particular cases) for a pair of weights u and w such that a Calderón–Zygmund operator T, or its commutator [b, T], with b∈BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{BMO}$$\end{document}, is bounded on the weighted Lorentz spaces Λup(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{u}^{p}{(w)}$$\end{document}, for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. This result completes the study already known for the Hardy–Littlewood maximal operator and the Hilbert transform, and hence unifies the weighted theories for the Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} and Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} classes.
引用
收藏
页码:8979 / 8990
页数:11
相关论文
共 27 条
[1]  
Agora E(2013)Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces J. Fourier Anal. Appl. 19 712-730
[2]  
Carro MJ(1994)Estimates with Boll. Unione Mat. ital. 8 123-133
[3]  
Soria J(1990) weights for various singular integral operators Trans. Am. Math. Soc. 320 727-735
[4]  
Alvarez J(2007)Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions Mem. Am. Math. Soc. 112 480-494
[5]  
Pérez C(1993)Recent developments in the theory of Lorentz spaces and weighted inequalities J. Funct. Anal. 51 241-250
[6]  
Ariño MA(1974)Weighted Lorentz spaces and the Hardy operator Stud. Math. 103 611-635
[7]  
Muckenhoupt B(1976)Weighted norm inequalities for maximal functions and singular integrals Ann. Math. 176 227-251
[8]  
Carro MJ(1973)Factorization theorems for Hardy spaces in several variables Trans. Am. Math. Soc. 36B 467-484
[9]  
Raposo JA(2015)Weighted norm inequalities for the conjugate function and Hilbert transform Chin. Ann. Math. 51 37-55
[10]  
Soria J(1950)Convolutions, tensor products and multipliers of the Orlicz–Lorentz Spaces Ann. Math. 165 207-226