First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems

被引:0
作者
J. J. Ye
S. Y. Wu
机构
[1] University of Victoria,Department of Mathematics and Statistics
[2] National Cheng-Kung University,Institute of Applied Mathematics
[3] National Center for Theoretical Sciences,undefined
来源
Journal of Optimization Theory and Applications | 2008年 / 137卷
关键词
Necessary optimality conditions; Constraint qualifications; Nonsmooth analysis; Value function; Generalized semi-infinite programming problems;
D O I
暂无
中图分类号
学科分类号
摘要
We study first-order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various well-known constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs takes a weaker form unless a certain constraint qualification is satisfied. In the completely convex case where the objective of the lower-level problem is concave and the constraint functions are quasiconvex, we show that the KKT condition takes a sharper form.
引用
收藏
页码:419 / 434
页数:15
相关论文
共 27 条
  • [1] Hettich R.(1993)Semi-infinite programming: theory, methods and application SIAM Rev. 35 380-429
  • [2] Kortanek K.O.(1999)First-order optimality conditions in generalized semi-infinite programming J. Optim. Theory Appl. 101 677-691
  • [3] Rückmann J.-J.(2001)On linear and linearized generalized semi-infinite optimization problems Ann. Oper. Res. 101 191-208
  • [4] Shapiro A.(2001)First-order optimality conditions for degenerated index sets in generalized semi-infinite optimization Math. Oper. Res. 26 565-582
  • [5] Rückmann J.-J.(2000)On level sets of marginal functions Optimization 48 43-67
  • [6] Stein O.(2004)On constraint qualifications in non-smooth optimization J. Optim. Theory Appl. 121 647-671
  • [7] Stein O.(2000)On optimality conditions for generalized semi-infinite programming problems J. Optim. Theory Appl. 104 443-458
  • [8] Stein O.(2002)On generalized semi-infinite optimization and bilevel optimization Eur. J. Oper. Res. 142 444-462
  • [9] Stein O.(2001)Generalized semi-infinite programming: numerical aspects Optimization 49 223-242
  • [10] Stein O.(2005)Extensions of the Kuhn-Tucker constraint qualification to generalized semi-infinite programming SIAM J. Optim. 15 926-937