On the Critical Exponents of Certain Nonlinear Boundary-Value Problems with Biharmonic Operator in the Exterior of a Ball

被引:0
作者
Yu. V. Volodin
机构
[1] Tula State University,
来源
Mathematical Notes | 2006年 / 79卷
关键词
critical exponent; semilinear inequality; a priori estimate; test function; homogeneous biharmonic equation; boundary condition of the first and second kind;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sufficient conditions for the absence of global solutions of the differential inequality Δ2u≥|u|q in the exterior of a ball. We consider various boundary conditions and show that the critical exponents depend on these conditions. The proofs are based on the test function method developed by Mitidieri and Pokhozhaev.
引用
收藏
页码:185 / 195
页数:10
相关论文
共 6 条
  • [1] Mitidieri E.(2001)A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities Trudy Mat. Inst. Steklov 234 1-362
  • [2] Pokhozhaev S. I.(1999)Absence of positive solutions for quasilinear elliptic problems in ℝ Trudy Mat. Inst. Steklov 227 192-222
  • [3] Mitidieri E.(1998)Absence of global positive solutions of quasilinear elliptic inequalities Dokl. Ross. Akad. Nauk 359 456-460
  • [4] Pokhozhaev S. I.(undefined)undefined undefined undefined undefined-undefined
  • [5] Mitidieri E.(undefined)undefined undefined undefined undefined-undefined
  • [6] Pokhozhaev S. I.(undefined)undefined undefined undefined undefined-undefined