The Length–Biased Weibull–Rayleigh Distribution for Application to Hydrological Data

被引:0
作者
Tanachot Chaito
Manad Khamkong
机构
[1] Ph. D. Program in Applied Statistics,
[2] Department of Statistics,undefined
[3] Faculty of Science,undefined
[4] Chiang Mai University,undefined
[5] Data Science Research Center,undefined
[6] Department of Statistics,undefined
[7] Faculty of Science,undefined
[8] Chiang Mai University,undefined
来源
Lobachevskii Journal of Mathematics | 2021年 / 42卷
关键词
length–biased; Weibull–Rayleigh distribution; maximum likelihood estimation; hydrological data;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3253 / 3265
页数:12
相关论文
共 48 条
[11]  
Bakouch H. S.(1965)On discrete distributions arising out of methods of ascertainment Sankhya: Indian J. Stat., Ser. A 27 311-324
[12]  
Iqbal Z.(2016)Length-biased weighted Lomax distribution: Statistical properties and application Pakist. J. Stat. Oper. Res. 12 245-255
[13]  
Alzaatreh A.(2011)On some length-biased weighted Weibull distribution Adv. Appl. Sci. Res. 2 465-475
[14]  
Famoye F.(2011)Applicability of length biased weighted generalized Rayleigh distribution Adv. Appl. Sci. Res. 2 320-327
[15]  
Lee C.(2013)Structural properties of length biased beta distribution of the first kind Am. J. Eng. Res. 2 1-6
[16]  
Al-Aqtash R.(2014)The length-biased exponentiated inverted Weibull distribution Int. J. Pure Appl. Math. 92 191-206
[17]  
Lee C.(1978)The estimating the dimension of a model Ann. Stat. 6 461-464
[18]  
Famoye F.(1996)The exponentiated Weibull family: Some properties and a flood data application Commun. Stat. Theory Methods 25 3059-3083
[19]  
Oguntunde P. E.(undefined)undefined undefined undefined undefined-undefined
[20]  
Balogun O. S.(undefined)undefined undefined undefined undefined-undefined