Asymptotic properties of some space-time fractional stochastic equations

被引:1
|
作者
Mohammud Foondun
Erkan Nane
机构
[1] University of Strathclyde,
[2] Auburn University,undefined
来源
Mathematische Zeitschrift | 2017年 / 287卷
关键词
Space-time-fractional stochastic partial differential equations; Fractional Duhamel’s principle; Caputo derivatives; Noise excitability;
D O I
暂无
中图分类号
学科分类号
摘要
Consider non-linear time-fractional stochastic heat type equations of the following type, ∂tβut(x)=-ν(-Δ)α/2ut(x)+It1-β[λσ(u)F·(t,x)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial ^\beta _tu_t(x)=-\nu (-\Delta )^{\alpha /2} u_t(x)+I^{1-\beta }_t[\lambda \sigma (u)\mathop {F}\limits ^{\cdot }(t,x)] \end{aligned}$$\end{document}in (d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d+1)$$\end{document} dimensions, where ν>0,β∈(0,1),α∈(0,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu >0, \beta \in (0,1), \alpha \in (0,2]$$\end{document}. The operator ∂tβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^\beta _t$$\end{document} is the Caputo fractional derivative while -(-Δ)α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-(-\Delta )^{\alpha /2} $$\end{document} is the generator of an isotropic stable process and It1-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{1-\beta }_t$$\end{document} is the Riesz fractional integral operator. The forcing noise denoted by F·(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {F}\limits ^{\cdot }(t,x)$$\end{document} is a Gaussian noise. And the multiplicative non-linearity σ:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is assumed to be globally Lipschitz continuous. Mijena and Nane (Stochastic Process Appl 125(9):3301–3326, 2015) have introduced these time fractional SPDEs. These types of time fractional stochastic heat type equations can be used to model phenomenon with random effects with thermal memory. Under suitable conditions on the initial function, we study the asymptotic behaviour of the solution with respect to time and the parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. In particular, our results are significant extensions of those in Ann Probab (to appear), Foondun and Khoshnevisan (Electron J Probab 14(21): 548–568, 2009), Mijena and Nane (2015) and Mijena and Nane (Potential Anal 44:295–312, 2016). Along the way, we prove a number of interesting properties about the deterministic counterpart of the equation.
引用
收藏
页码:493 / 519
页数:26
相关论文
共 50 条
  • [21] GALERKIN FINITE ELEMENT APPROXIMATIONS FOR STOCHASTIC SPACE-TIME FRACTIONAL WAVE EQUATIONS
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3173 - 3202
  • [22] Stochastic partial differential equations with gradient driven by space-time fractional noises
    Yiming Jiang
    Xu Yang
    Frontiers of Mathematics in China, 2021, 16 : 479 - 497
  • [23] Space-time fractional stochastic partial differential equations with Lévy noise
    Xiangqian Meng
    Erkan Nane
    Fractional Calculus and Applied Analysis, 2020, 23 : 224 - 249
  • [24] Stochastic partial differential equations with gradient driven by space-time fractional noises
    Jiang, Yiming
    Yang, Xu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (02) : 479 - 497
  • [25] Propagation of high peaks for the space-time fractional stochastic partial differential equations
    Guerngar, Ngartelbaye
    Nane, Erkan
    ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30
  • [26] ON OBLIQUE WAVE SOLUTIONS OF SOME SPACE-TIME FRACTIONAL MODIFIED KDV EQUATIONS
    Zafar, Asim
    Bekir, Ahmet
    Khalid, Bushra
    Amjad, Muhammad
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 909 - 918
  • [27] Space-time fractional diffusion equations and asymptotic behaviors of a coupled continuous time random walk model
    Shi, Long
    Yu, Zuguo
    Mao, Zhi
    Xiao, Aiguo
    Huang, Hailan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (23) : 5801 - 5807
  • [28] ON OBLIQUE WAVE SOLUTIONS OF SOME SPACE-TIME FRACTIONAL MODIFIED KDV EQUATIONS
    Zafar, Asim
    Bekir, Ahmet
    Khalid, Bushra
    Amjad, Muhammad
    JOURNAL OF SCIENCE AND ARTS, 2021, (04): : 909 - 918
  • [29] Blow-Up Results for Space-Time Fractional Stochastic Partial Differential Equations
    Sunday A. Asogwa
    Jebessa B. Mijena
    Erkan Nane
    Potential Analysis, 2020, 53 : 357 - 386
  • [30] Blow-Up Results for Space-Time Fractional Stochastic Partial Differential Equations
    Asogwa, Sunday A.
    Mijena, Jebessa B.
    Nane, Erkan
    POTENTIAL ANALYSIS, 2020, 53 (02) : 357 - 386