Some Basic Extensions of Gustafson-Rakha's Multivariate Basic Hypergeometric Series

被引:0
|
作者
Medhat A. Rakha
机构
[1] Mathematics Department,
[2] Faculty of Science,undefined
[3] Suez Canal University,undefined
[4] Ismailia 41522,undefined
[5] Egypt,undefined
[6] email: marakha@hotmail.com,undefined
关键词
Keywords:q-series, q-beta integrals, integral transformation, hypergeometric series very well poised on Lie algebras;
D O I
10.1007/s00026-002-8035-y
中图分类号
学科分类号
摘要
In this paper we extend some special cases of the multivariate basic hypergeometric series associated to the roots system of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ A_m $\end{document} that has been established and proved in [8]. For both types of the series, we will prove that when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ m = 2n; n =1 $\end{document} one of the series is equivalent to Jackson's \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ _8 \Psi _7 $\end{document} sum, while the other series is equivalent to the basic Gauss' sum.
引用
收藏
页码:107 / 115
页数:8
相关论文
共 50 条