Keywords:q-series, q-beta integrals, integral transformation, hypergeometric series very well poised on Lie algebras;
D O I:
10.1007/s00026-002-8035-y
中图分类号:
学科分类号:
摘要:
In this paper we extend some special cases of the multivariate basic hypergeometric series associated to the roots system of type \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ A_m $\end{document} that has been established and proved in [8]. For both types of the series, we will prove that when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ m = 2n; n =1 $\end{document} one of the series is equivalent to Jackson's \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ _8 \Psi _7 $\end{document} sum, while the other series is equivalent to the basic Gauss' sum.
机构:
Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China