Existence of a Solution “in the Large” for Ocean Dynamics Equations

被引:0
作者
Georgy M. Kobelkov
机构
[1] Moscow State University,Department of Mechanics and Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2007年 / 9卷
关键词
35Q35; 65M70; 86A10; Ocean dynamics equations; primitive equations; nonlinear partial differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
For the system of equations describing the large-scale ocean dynamics, an existence and uniqueness theorem is proved “in the large”. This system is obtained from the 3D Navier–Stokes equations by changing the equation for the vertical velocity component u3 under the assumption of smallness of a domain in z-direction, and a nonlinear equation for the density function ρ is added. More precisely, it is proved that for an arbitrary time interval [0, T], any viscosity coefficients and any initial conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\hat{\bf u}}_{0} = (u_1, u_2) \in W_{2}^{2}(\Omega), \quad \int_{0}^{1}(\partial_{1}u_{1} + \partial_{2}u_{2})dz = 0, \quad \rho_{0} \in W_{2}^{2}(\Omega),$$ \end{document} a weak solution exists and is unique and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\hat{\bf u}}_{x_3} \in {\bf W}_{2}^{1}(Q_T), \rho_{x_{3}} \in W_{2}^{1}(Q_T)$$ \end{document} and the norms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|\nabla{\hat{\bf u}}\|_{\Omega}, \|\nabla \rho \|_{\Omega}$$ \end{document} are continuous in t.
引用
收藏
页码:588 / 610
页数:22
相关论文
empty
未找到相关数据