On a Factorization Method for Matrix Functions in the Wiener Algebra of Order 2

被引:0
作者
Voronin A.F. [1 ]
机构
[1] Sobolev Institute of Mathematics, Siberian Branch, Russian Academy ofSciences, Novosibirsk
关键词
factorization problem; partial indices; truncated Wiener–Hopf equation; Wiener algebra;
D O I
10.1134/S1990478922020168
中图分类号
学科分类号
摘要
Abstract: A method for reducing the factorization problem for an arbitrary matrix function withnonnegative total index in (an everywhere dense subalgebra of) the Wiener algebra of order 2 tothe truncated Wiener–Hopf equation is found. With the help of the method, an efficientfactorization of one class of matrix functions in the Wiener algebra of order 2 is constructed. © 2022, Pleiades Publishing, Ltd.
引用
收藏
页码:365 / 376
页数:11
相关论文
共 19 条
[1]  
Muskhelishvili N.I., Singular Integral Equations, (1972)
[2]  
Gakhov F.D., Riemann boundary value problem for a system of n pairs of functions, Usp. Mat. Nauk, 7, 4, pp. 3-54, (1954)
[3]  
Gokhberg I.T., Krein M.G., Systems of integral equations on the half-line with kernels depending on the difference of the arguments, Usp. Mat. Nauk, 13, 280, pp. 3-72, (1958)
[4]  
Plemeli J., Riemannsche Funktionenscharen mit gegebener Monodromiegruppe, Monatshefte Math. Phys., 19, pp. 211-245, (1908)
[5]  
Gohberg I., Kaashoek M.A., Spitkovsky I.M., An overview of matrix factorization theory and operator applications, factorization and integrable systems, Oper. Theory Adv. Appl., 141, pp. 1-102, (2003)
[6]  
Voronin A.F., A method for determining the partial indices of symmetric matrix functions, Sib. Math. J., 52, 1, pp. 41-53, (2011)
[7]  
Rogosin S.V., Mishuris G., Constructive methods for factorization of matrix-functions, IMA J. Appl. Math., 81, 1, pp. 365-391, (2016)
[8]  
Voronin A.F., On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener–Hopf Equation, Russ. Math., 64, pp. 20-28, (2020)
[9]  
Adukov V.M., Wiener–Hopf factorization of meromorphic matrix functions, St. Petersburg Math. J., 4, 1, pp. 51-69, (1993)
[10]  
Shmul'yan Y.L., Riemann problem with a positive definite matrix, Usp. Mat. Nauk, 8, 254, pp. 143-145, (1953)