The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform

被引:0
|
作者
M. El Kassimi
Y. El Haoui
S. Fahlaoui
机构
[1] University Moulay Ismaïl,Department of Mathematics and Computer Sciences, Faculty of Sciences, Equipe d’Analyse Harmonique et Probabilités
来源
Analysis Mathematica | 2019年 / 45卷
关键词
Wigner-Ville distribution; offset linear canonical transform; linear canonical transform; quaternionic transform; Heisenberg uncertainty; Poisson summation formula; Lieb’s inequality; 42A32;
D O I
暂无
中图分类号
学科分类号
摘要
The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.
引用
收藏
页码:787 / 802
页数:15
相关论文
共 50 条
  • [1] The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    El Kassimi, M.
    El Haoui, Y.
    Fahlaoui, S.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 787 - 802
  • [2] Wigner-Ville distribution and ambiguity function associated with the quaternion offset linear canonical transform
    Bhat, Mohammad Younus
    Almanjahie, Ibrahim M.
    Dar, Aamir H.
    Dar, Javid G.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 786 - 797
  • [3] Uncertainty Principles for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    Urynbassarova, Didar
    El Haoui, Youssef
    Zhang, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (01) : 385 - 404
  • [4] Erratum to: The Wigner—Ville distribution associated with the quaternion offset linear canonical transform
    Y. El Haoui
    Analysis Mathematica, 2022, 48 : 279 - 282
  • [5] Wigner-Ville Distribution Associated with the Linear Canonical Transform
    Bai, Rui-Feng
    Li, Bing-Zhao
    Cheng, Qi-Yuan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Quaternion Wigner-Ville distribution associated with the linear canonical transforms
    Fan, Xiang-Li
    Kou, Kit Ian
    Liu, Ming-Sheng
    SIGNAL PROCESSING, 2017, 130 : 129 - 141
  • [8] The Wigner-Ville Distribution Based on the Offset Linear Canonical Transform Domain
    Urynbassarova, Didar
    Urynbassarova, Altyn
    Al-Hussam, Ebrahim
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 139 - 142
  • [9] Uncertainty Principles for Wigner–Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    Didar Urynbassarova
    Youssef El Haoui
    Feng Zhang
    Circuits, Systems, and Signal Processing, 2023, 42 : 385 - 404
  • [10] Convolution and correlation theorems for Wigner-Ville distribution associated with the offset linear canonical transform
    Urynbassarova, Didar
    Li, Bing Zhao
    Tao, Ran
    OPTIK, 2018, 157 : 455 - 466