Random Bit Quadrature and Approximation of Distributions on Hilbert Spaces

被引:0
作者
Michael B. Giles
Mario Hefter
Lukas Mayer
Klaus Ritter
机构
[1] University of Oxford,Mathematical Institute
[2] Fachbereich Mathematik,undefined
[3] Technische Universität Kaiserslautern,undefined
来源
Foundations of Computational Mathematics | 2019年 / 19卷
关键词
Gaussian measures on Hilbert spaces; Integration; Approximation of probability measures; Quantization; Random bits; Multilevel Monte Carlo algorithms; Stochastic differential equations; 60G15; 60H35; 60H10; 65D30; 65C05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the approximation of expectations E(f(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {E}}(f(X))$$\end{document} for Gaussian random elements X with values in a separable Hilbert space H and Lipschitz continuous functionals f:H→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :H \rightarrow {{\mathbb {R}}}$$\end{document}. We consider restricted Monte Carlo algorithms, which may only use random bits instead of random numbers. We determine the asymptotics (in some cases sharp up to multiplicative constants, in the other cases sharp up to logarithmic factors) of the corresponding n-th minimal error in terms of the decay of the eigenvalues of the covariance operator of X. It turns out that, within the margins from above, restricted Monte Carlo algorithms are not inferior to arbitrary Monte Carlo algorithms, and suitable random bit multilevel algorithms are optimal. The analysis of this problem leads to a variant of the quantization problem, namely the optimal approximation of probability measures on H by uniform distributions supported by a given finite number of points. We determine the asymptotics (up to multiplicative constants) of the error of the best approximation for the one-dimensional standard normal distribution, for Gaussian measures as above, and for scalar autonomous SDEs.
引用
收藏
页码:205 / 238
页数:33
相关论文
共 37 条
  • [1] Creutzig J(2009)Infinite-dimensional quadrature and approximation of distributions Found. Comput. Math. 9 391-429
  • [2] Dereich S(2008)The coding complexity of diffusion processes under supremum norm distortion Stochastic Process. Appl. 118 917-937
  • [3] Müller-Gronbach T(2008)The coding complexity of diffusion processes under Stochastic Process. Appl. 118 938-951
  • [4] Ritter K(2003)-norm distortion J. Theor. Probab. 16 249-265
  • [5] Dereich S(2006)On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces Electron. J. Probab. 11 700-722
  • [6] Dereich S(2013)High-resolution quantization and entropy coding for fractional Brownian motion Ann. Inst. Henri Poincaré (B) 49 1183-1203
  • [7] Dereich S(2006)Constructive quantization: approximation by empirical measures Prog. Natur. Sci. 16 588-593
  • [8] Fehringer F(2015)Optimal error bound of restricted Monte Carlo in anisotropic Sobolev classes Acta Numer. 24 259-328
  • [9] Matoussi A(2008)Multilevel Monte Carlo methods Trans. Amer. Math. Soc. 360 1443-1474
  • [10] Scheutzow M(2002)Small ball probabilities for Gaussian random fields and tensor products of compact operators J. Funct. Anal. 196 486-531