On Various Generalizations of Semi-A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-Fredholm Operators

被引:0
作者
Stefan Ivković
机构
[1] The Mathematical Institute of the Serbian Academy of Sciences and Arts,
关键词
Generalized ; -Fredholm operator; Generalized ; -Weyl operator; Semi-; -; -Fredholm operator; Non-adjointable semi-; -Fredholm operator; Primary 47A53; Secondary 46L08;
D O I
10.1007/s11785-020-00995-3
中图分类号
学科分类号
摘要
Starting from the definition of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-Fredholm and semi-A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-Fredholm operator on the standard module over a unital C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document} algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}, introduced in Ivković (Banach J Math Anal 13(4):989–1016, 2019) and Mishchenko and Fomenko (Izv Akad Nauk SSSR Ser Mat 43:831–859, 1979), we construct various generalizations of these operators and obtain several results as an analogue or a generalization of the results in Berkani and Sarih (Glasg Math J 43(3):457–465, 2001. https://doi.org/10.1017/S0017089501030075), Berkani (Proc Am Math Soc 130(6):1717–1723, 2001), Djordjević (Proc Am Math Soc 130(1):81–84, 2001) and Yang (Trans Am Math Soc 216:313–326, 1976). Moreover, we also study non-adjointable semi-A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-Fredholm operators as a natural continuation of the work in Irmatov and Mishchenko (J K-Theory 2:329–351, 2008. https://doi.org/10.1017/is008004001jkt034) on non-adjointable A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-Fredholm operators and obtain an analogue or a generalization in this setting of the results in Ivković (Banach J Math Anal 13(4):989–1016, 2019; Ann Funct Anal, 2020. https://doi.org/10.1007/43034-019-00034-z).
引用
收藏
相关论文
共 12 条
[1]  
Berkani M(2001)On semi B-Fredholm operators Glasg. Math. J. 43 457-465
[2]  
Sarih M(2001)On semi B-Fredholm operators Proc. Am. Math. Soc. 130 1717-1723
[3]  
Berkani M(2002)Perturbations of spectra of operator matrices J. Oper. Theory 48 467-486
[4]  
Djordjević DS(2001)On generalized Weyl operators Proc. Am. Math. Soc. 130 81-84
[5]  
Djordjević DS(1989)The ghost of an index theorem Proc. Am. Math. Soc. 106 1031-1033
[6]  
Harte RE(2019)Semi-Fredholm theory on Hilbert C*-modules Banach J. Math. Anal. 13 989-1016
[7]  
Ivković S(2020)On compressions and generalized spectra of operators over Ann. Funct. Anal. 27 48-60
[8]  
Ivković S(2020)-algebras Russ. J. Math. Phys. 2 329-351
[9]  
Ivković S(2008)On operators with closed range and semi-Fredholm operators over J. K-Theory 216 313-326
[10]  
Irmatov AA(1976)*-algebras Trans. Am. Math. Soc. undefined undefined-undefined