Exact solutions for nonlinear partial differential equations via a fusion of classical methods and innovative approaches

被引:0
作者
Noureddine Mhadhbi
Sameh Gana
Mazen Fawaz Alsaeedi
机构
[1] King Abdulaziz University,Department of Mathematics, College of Sciences and Arts
[2] Imam Abdulrahman Bin Faisal University,Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies
来源
Scientific Reports | / 14卷
关键词
Partial differential equations; Nonlinear partial differential equations; Variation of parameters; Method of characteristics; Mathematica;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new approach for finding exact solutions to certain classes of nonlinear partial differential equations (NLPDEs) by combining the variation of parameters method with classical techniques such as the method of characteristics. Our primary focus is on NLPDEs of the form utt+a(x,t)uxt+b(t)ut=α(x,t)+G(u)(ut+a(x,t)ux)e-∫b(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt}+a(x,t)u_{xt}+b(t)u_{t}=\alpha (x,t)+ G(u)(u_{t}+a(x,t)u_{x})e^{-\int b(t)dt}$$\end{document} and utm(utt+a(x,t)uxt)+b(t)utm+1=e-(m+1)∫b(t)dt(ut+a(x,t)ux)F(u,ute∫b(t)dt).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t}^{m}(u_{tt}+a(x,t)u_{xt})+b(t)u_{t}^{m+1}=e^{-(m+1)\int b(t)dt}(u_{t}+a(x,t)u_{x}) F(u,u_{t}e^{\int b(t)dt}).$$\end{document} We provide numerical validation through several examples to ensure accuracy and reliability. Our approach enhances the applicability of analytical solution methods for a broader range of NLPDEs.
引用
收藏
相关论文
共 38 条
  • [1] Mhadhbi Kaidi N(2002)Quasi-invariant tori and semi-excited states for schrodinger operators. i. asymptotics Commun. Part. Differ. Equ. 27 1695-1750
  • [2] Rouleux M(2023)Exact solutions of classes of second order nonlinear partial differential equations reducible to first order Int. J. Adv. Appl. Sci. 10 78-85
  • [3] Mhadhbi N(2013)Existence and exact asymptotic behavior of positive solutions for a fractional boundary value problem Abstr. Appl. Anal. 2013 1-6
  • [4] Gana S(2022)Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations J. Appl. Math. Comput. Mech. 21 5-15
  • [5] Alharbi H(2022)Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method Alex. Eng. J. 61 12443-12451
  • [6] Mâagli H(2023)Comparison of third-order fractional partial differential equation based on the fractional operators using the explicit finite difference method Alex. Eng. J. 70 37-44
  • [7] Mhadhbi N(2023)Stability analysis and numerical implementation of the third-order fractional partial differential equation based on the caputo fractional derivative J. Appl. Math. Comput. Mech. 22 33-42
  • [8] Zeddini N(2010)The variational iteration method which should be followed Nonlinear Sci. Lett. A. 1 1-30
  • [9] Modanli M(2008)Extended simplest equation method for nonlinear differential equations Appl. Math. Comput. 205 396-402
  • [10] Abdulazeez ST(2000)Extended tanh-function method and its applications to nonlinear equations Phys. Lett. A 277 212-218