Rigidity for closed manifolds with positive curvature

被引:0
作者
Changyu Xia
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] MPI for Mathematics in the Sciences,undefined
来源
Annals of Global Analysis and Geometry | 2009年 / 36卷
关键词
Rigidity; Closed manifolds; Sectional curvature; Conjugate locus; 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature sec(M) ≥ 1 and radius rad(M) > π/2. In this article, we show that M is isometric to a round n-sphere if for any x ∈ M, the first conjugate locus of x is a single point and if M contains a geodesic loop of length 2 · rad(M). We also show that the same conclusion is true if the conjugate value function at any point of M is a constant function.
引用
收藏
页码:105 / 110
页数:5
相关论文
共 20 条
[11]  
Petersen P.(1980)On the geometry of positively curved manifolds with large radius J. Differ. Geom. 15 91-96
[12]  
Grove K.(2002)Odd-dimensional wiedersehen manifolds are spheres Compos. Math. 132 49-55
[13]  
Shiohama K.(2006)Some applications of critical point theory of distance functions on Riemannian manifolds Compos. Math. 142 1327-1331
[14]  
Micallef M.(undefined)A round sphere theorem for positive sectional curvature undefined undefined undefined-undefined
[15]  
Moore J.D.(undefined)undefined undefined undefined undefined-undefined
[16]  
Toponogov V.A.(undefined)undefined undefined undefined undefined-undefined
[17]  
Wang Q.(undefined)undefined undefined undefined undefined-undefined
[18]  
Yang C.T.(undefined)undefined undefined undefined undefined-undefined
[19]  
Xia C.(undefined)undefined undefined undefined undefined-undefined
[20]  
Xia C.(undefined)undefined undefined undefined undefined-undefined