Rigidity for closed manifolds with positive curvature

被引:0
作者
Changyu Xia
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] MPI for Mathematics in the Sciences,undefined
来源
Annals of Global Analysis and Geometry | 2009年 / 36卷
关键词
Rigidity; Closed manifolds; Sectional curvature; Conjugate locus; 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature sec(M) ≥ 1 and radius rad(M) > π/2. In this article, we show that M is isometric to a round n-sphere if for any x ∈ M, the first conjugate locus of x is a single point and if M contains a geodesic loop of length 2 · rad(M). We also show that the same conclusion is true if the conjugate value function at any point of M is a constant function.
引用
收藏
页码:105 / 110
页数:5
相关论文
共 20 条
[1]  
Abresch U.(1994)Pinching below J. Differential Geom. 40 643-691
[2]  
Meyer T.W.(1996), injectivity radius, and conjugate radius J. Differential Geom. 44 214-261
[3]  
Abresch U.(1963)A sphere theorem with a pinching constant below Ann. Math. 78 289-299
[4]  
Meyer T.W.(1987)Aufwiedersehnsflachen Ann. Sci. Éc. Norm. Sup. 20 227-239
[5]  
Green L.W.(1992)A generalization of Berger’s rigidity theorem for positively curved manifolds Acta Math. 169 131-151
[6]  
Gromoll D.(1993)Volume comparison á la Aleksandrov Invent. Math. 112 577-583
[7]  
Grove K.(1977)A radius sphere theorem Ann. Math. 106 201-211
[8]  
Grove K.(1988)A generalized sphere theorem Ann. Math. 127 199-227
[9]  
Petersen P.(1959)Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes Dokl. Akad. Nauk. SSSR 124 282-284
[10]  
Grove K.(2004)computation of the length of a closed geodesic on a convex surface Illinois J. Math. 48 89-96