The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions

被引:0
作者
Riccardo Montalto
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
来源
Journal of Dynamics and Differential Equations | 2021年 / 33卷
关键词
Fluid dynamics; Navier–Stokes equation; Quasi-periodic solutions; Asymptotic and orbital stability; 37K55; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of small amplitude, time-quasi-periodic solutions (invariant tori) for the incompressible Navier–Stokes equation on the d-dimensional torus Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb T^d$$\end{document}, with a small, quasi-periodic in time external force. We also show that they are orbitally and asymptotically stable in Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document} (for s large enough). More precisely, for any initial datum which is close to the invariant torus, there exists a unique global in time solution which stays close to the invariant torus for all times. Moreover, the solution converges asymptotically to the invariant torus for t→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow + \infty $$\end{document}, with an exponential rate of convergence O(e-αt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O( e^{- \alpha t })$$\end{document} for any arbitrary α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, 1)$$\end{document}.
引用
收藏
页码:1341 / 1362
页数:21
相关论文
共 73 条
[1]  
Baldi P(2018)Time quasi-periodic gravity water waves in finite depth Invent. Math. 214 739-911
[2]  
Berti M(2014)KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation Math. Ann. 359 471-536
[3]  
Haus E(2018)Reducibility of the quantum Harmonic oscillator in Anal. PDEs 11 775-799
[4]  
Montalto R(2019)-dimensions with polynomial time dependent perturbation Ann. Inst. Henri Poincaré 20 1893-1929
[5]  
Baldi P(2016)Reducibility of non-resonant transport equation on Boll. Unione Mat. Ital. 9 115-142
[6]  
Berti M(2013) with unbounded perturbations Eur. J. Math. 15 229-286
[7]  
Montalto R(2012)KAM for PDEs Nonlinearity 25 2579-2613
[8]  
Bambusi D(2015)Quasi-periodic solutions with Sobolev regularity of NLS on Commun. Math. Phys. 334 1413-1454
[9]  
Grebert B(2019) with a multiplicative potential Mem. Am. Math. Soc. 263 1273-439
[10]  
Maspero A(1998)Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential Ann. Math. 148 363-1498