Common fixed points for R-weakly commuting in fuzzy metric spaces

被引:1
作者
Sintunavarat W. [1 ]
Kumam P. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Bangmod
关键词
(CLRg) property; E.A; property; Fuzzy metric spaces; R-weakly commuting type (A [!sub]g[!/sub]);
D O I
10.1007/s11565-012-0150-z
中图分类号
学科分类号
摘要
In this paper, we study the concept of R-weakly commuting of type (A g) of Pathak et al. (Bull Korean Math Soc 34:247-257, 1997) in fuzzy metric spaces. We also establish the existence of common fixed point theorems by using the common limit in the range property and give an example to validate our the main results. © 2012 Università degli Studi di Ferrara.
引用
收藏
页码:389 / 406
页数:17
相关论文
共 34 条
  • [1] Aamri M., El Moutawakil D., Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270, pp. 181-188, (2002)
  • [2] Arvanitakis A.D., A proof of the generalized Banach contraction conjecture, Proc. Am. Math. Soc., 131, 12, pp. 3647-3656, (2003)
  • [3] Boyd D.W., Wong J.S.W., On nonlinear contractions, Proc. Am. Math. Soc., 20, pp. 458-464, (1969)
  • [4] Cho Y.J., Fixed points for compatible mappings of type (A), Math. Japan, 18, pp. 497-508, (1993)
  • [5] Cho Y.J., Sharma B.K., Sahu D.R., Semicompatibility and fixed points, Math. Japan, 42, 1, pp. 91-98, (1995)
  • [6] Cho Y.J., Fixed points in fuzzy metric spaces, J. Fuzzy Math., 5, pp. 949-962, (1997)
  • [7] Cho Y.J., Pathak H.K., Kang S.M., Jung J.S., Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets Syst., 93, pp. 99-111, (1998)
  • [8] Cho Y.J., Sedghi S., Shobe N., Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces, Chaos Solitons Fract., 39, pp. 2233-2244, (2009)
  • [9] George A., Veeramani P., On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64, pp. 395-399, (1994)
  • [10] George A., Veeramani P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90, pp. 365-368, (1997)